找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva; Volume II - Astronom K. V. Sarma,K. Ramasubramanian,M. S. Sriram Boo

[復(fù)制鏈接]
查看: 17876|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:18:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva
副標(biāo)題Volume II - Astronom
編輯K. V. Sarma,K. Ramasubramanian,M. S. Sriram
視頻videohttp://file.papertrans.cn/381/380980/380980.mp4
叢書名稱Culture And History Of Mathematics
圖書封面Titlebook: Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva; Volume II - Astronom K. V. Sarma,K. Ramasubramanian,M. S. Sriram Boo
出版日期Book 2008
版次1
doihttps://doi.org/10.1007/978-93-86279-37-8
isbn_ebook978-93-86279-37-8
copyrightHindustan Book Agency 2008
The information of publication is updating

書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva影響因子(影響力)




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva影響因子(影響力)學(xué)科排名




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva網(wǎng)絡(luò)公開度




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva被引頻次




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva被引頻次學(xué)科排名




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva年度引用




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva年度引用學(xué)科排名




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva讀者反饋




書目名稱Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:09 | 只看該作者
https://doi.org/10.1007/978-3-658-23264-1 . and five and divided by .. These two views are worth consideration. Then, (for the Moon), compute the . and apply the corrections of . and .. Then compute the . for the Sun. Compute and apply the correction of . for both the Sun and the Moon. Ascertain also the distance, at the required time, between the centres of the solar and lunar spheres.
板凳
發(fā)表于 2025-3-22 01:35:18 | 只看該作者
地板
發(fā)表于 2025-3-22 04:36:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:29:29 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:15 | 只看該作者
Earth and Celestial Spheresr secondaries, which are used as the reference circles for describing the location of a celestial object using different co-ordinates. Finally, there is an elaborate discussion on the determination of the declination of a celestial object with latitude.
7#
發(fā)表于 2025-3-22 20:03:08 | 只看該作者
8#
發(fā)表于 2025-3-22 21:55:48 | 只看該作者
Computation of Planetsime period, then . where . is a constant. Given ., the radius of the planetary orbit is determined, if the time period of a planet is known. The term . refers to the number of complete revolutions made by the planet in a . consisting of 43,20,000 years. This period is also called a . and consists of four parts namely ., ., . and ..
9#
發(fā)表于 2025-3-23 05:17:16 | 只看該作者
Eclipse longitudes are the same, it is the mid-eclipse. Now, we had.where, we approximate . by ., the true distance from the centre of the Earth in the denominator (essentially ignoring the higher order terms in .).
10#
發(fā)表于 2025-3-23 05:58:25 | 只看該作者
Epilogueand cosine functions and also developed fast convergent approximations to them. Here, we shall discuss how the Kerala School also made equally significant discoveries in astronomy, in particular, planetary theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陈巴尔虎旗| 沿河| 玛沁县| 宕昌县| 江北区| 三亚市| 凤阳县| 舟山市| 天峨县| 德江县| 红安县| 宜春市| 繁峙县| 静宁县| 山西省| 比如县| 文成县| 两当县| 吉安市| 新宾| 临湘市| 高密市| 博野县| 正安县| 时尚| 曲阜市| 那曲县| 清丰县| 道真| 同德县| 密山市| 大竹县| 微博| 封开县| 阿克陶县| 贞丰县| 邢台市| 于都县| 自治县| 团风县| 紫阳县|