找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian and Non-Gaussian Linear Time Series and Random Fields; Murray Rosenblatt Book 2000 Springer Science+Business Media New York 2000

[復(fù)制鏈接]
樓主: Disclose
21#
發(fā)表于 2025-3-25 04:00:43 | 只看該作者
Finite Automata and Regular Setsollow that of Georgii 1988. The parameter set of the random variables . . ∈ . is a countable infinite set. A typical case would be that in which . is the set of .-dimensional lattice points. The random variables . take values in a measure space . with . a σ7-field of subsets of . could be countable
22#
發(fā)表于 2025-3-25 10:49:06 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:17 | 只看該作者
Minimum Phase Estimation,uivalent asymptotically in the Gaussian case to maximum likelihood estimates. Consider the stationary ARMA (., .) minimum phase sequence {x.}. with the ξ.’s independent, identically distributed with mean zero and variance σ..
24#
發(fā)表于 2025-3-25 16:47:57 | 只看該作者
The Fluctuation of the Quasi-Gaussian Likelihood,otically normal estimates of the unknown parameters of the model. However, in the non-Gaussian context, even though and invertible (that is, minimum phase), the estimates are not efficient. In the nonminimum phase non-Gaussian case the estimates are not even consistent. However, because most estimat
25#
發(fā)表于 2025-3-25 22:24:14 | 只看該作者
Random Fields,ollow that of Georgii 1988. The parameter set of the random variables . . ∈ . is a countable infinite set. A typical case would be that in which . is the set of .-dimensional lattice points. The random variables . take values in a measure space . with . a σ7-field of subsets of . could be countable
26#
發(fā)表于 2025-3-26 03:21:26 | 只看該作者
27#
發(fā)表于 2025-3-26 08:02:43 | 只看該作者
Book 2000assical literature in time series analysis, particularly in the Gaussian case. There is a large literature on probabilistic and statistical aspects of these models-to a great extent in the Gaussian context. In the Gaussian case best predictors are linear and there is an extensive study of the asympt
28#
發(fā)表于 2025-3-26 10:03:29 | 只看該作者
29#
發(fā)表于 2025-3-26 14:14:58 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:55 | 只看該作者
https://doi.org/10.1007/978-3-642-85706-5se and consider estimation of parameters. Our discussion is an idealization since it is assumed that the scaled density function . of the independent random variables . generating the stationary autoregressive sequence of order . is known. A discussion of ARMA schemes is more complicated but of a similar character and remarks on them will be made.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芷江| 敦煌市| 新津县| 广德县| 衡东县| 无为县| 宜章县| 昌平区| 开封县| 库尔勒市| 青川县| 海盐县| 博湖县| 芜湖县| 镇原县| 定襄县| 株洲市| 嫩江县| 临澧县| 台北县| 青浦区| 丹寨县| 军事| 肇州县| 定安县| 楚雄市| 湟中县| 鄂伦春自治旗| 佛学| 扬中市| 修武县| 翁源县| 赤水市| 昭通市| 青海省| 长葛市| 双牌县| 南岸区| 隆化县| 吴江市| 澳门|