找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Game-Theoretic Methods in General Equilibrium Analysis; Jean-Fran?ois Mertens,Sylvain Sorin Book 1994 Springer Science+Business Media Dord

[復(fù)制鏈接]
樓主: ACORN
11#
發(fā)表于 2025-3-23 11:07:02 | 只看該作者
Game-Theoretic Methods in General Equilibrium Analysis
12#
發(fā)表于 2025-3-23 14:15:57 | 只看該作者
Economic Applications of the Shapley Valueons so as to maximize some social utility function. On the contrary, analysing the government as subject to the influence of those who elected it brings new light on both aspects. Value appears to be a natural tool to deal with the voting games that are part of the two corresponding models. In the l
13#
發(fā)表于 2025-3-23 18:33:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:11:42 | 只看該作者
Value of Games with a Continuum of Playersof players. The Shapley value is one of the basic solution concepts of cooperative game theory. It can be viewed as a sort of average or expected outcome, or even as an a priori evaluation of the players’ utility of playing the game.
15#
發(fā)表于 2025-3-24 03:02:02 | 只看該作者
16#
發(fā)表于 2025-3-24 06:37:28 | 只看該作者
Value Equivalence Theorems: The TU and NTU Casesapplication of various game theoretic solution concepts to these models has yielded important understandings. Most notably are the two well-known “principles”: the . and the . They show that Walrasian equilibria arise from completely new foundations.
17#
發(fā)表于 2025-3-24 13:49:24 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:35 | 只看該作者
An Axiomatic Approach to the Equivalence Phenomenonee, e.g., [1], [2], [3], [7], [8], [9], [10], [11], [12], [13], [14], [15], [19], [20]). We attempt to understand this phenomenon by making explicit certain crucial properties that are common across these solutions and on which — at bottom — the equivalence depends.
19#
發(fā)表于 2025-3-24 19:51:28 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诏安县| 铁岭县| 太康县| 浦城县| 襄汾县| 德昌县| 咸阳市| 株洲市| 延庆县| 潜江市| 祁连县| 临泽县| 德清县| 高淳县| 江津市| 江华| 五大连池市| 麻城市| 连山| 威宁| 桓仁| 巍山| 朝阳区| 安乡县| 隆昌县| 杂多县| 任丘市| 汪清县| 溧水县| 广平县| 武川县| 新沂市| 临猗县| 宁安市| 双城市| 灵寿县| 嘉黎县| 甘洛县| 凤冈县| 南部县| 南京市|