找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory of p-Extensions; Helmut Koch Book 2002 Springer-Verlag Berlin Heidelberg 2002 Cohomology.Prime.algebra.chomology of groups.c

[復(fù)制鏈接]
樓主: firearm
31#
發(fā)表于 2025-3-26 21:33:28 | 只看該作者
Introduction,Once the framework of Galois theory has been completed with the main theorem, the principal problem of the theory is the question: what are the possible normal extensions of a fixed base field . with given Galois group .. This problem is called the ..
32#
發(fā)表于 2025-3-27 04:20:54 | 只看該作者
33#
發(fā)表于 2025-3-27 08:54:08 | 只看該作者
Galois Theory of Infinite Algebraic Extensions,A Galois theory of a category R is a contravariant functor of R into a “simpler” category R′, where certain properties of the objects and morphisms of R are reflected in R′.
34#
發(fā)表于 2025-3-27 11:38:38 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:30 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:32 | 只看該作者
37#
發(fā)表于 2025-3-28 01:36:41 | 只看該作者
Results from Algebraic Number Theory,In this chapter we formulate the theorems from class field theory for finite extensions that we shall need in the following, and we will transfer them to infinite extension as far as is necessary.
38#
發(fā)表于 2025-3-28 05:57:34 | 只看該作者
The Maximal ,-Extension,The maximal .-extension . of a field . is the compositum (inside a fixed algebraic closure of .) of all finite .-extensions of ., i.e., of all normal (separable) extensions of . with .-power degree.
39#
發(fā)表于 2025-3-28 07:51:43 | 只看該作者
Local Fields of Finite Type,In this chapter we study the maximal .-extension more closely in the case where . is a local field of finite type. Let T denote the prime ideal of . and χ(T) the characteristic of the residue class field of ..
40#
發(fā)表于 2025-3-28 11:58:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝州市| 河池市| 柞水县| 崇义县| 平阴县| 永城市| 安平县| 磴口县| 东城区| 措美县| 偃师市| 香港| 津南区| 仪陇县| 屯昌县| 松滋市| 崇文区| 襄垣县| 绍兴县| 临猗县| 东平县| 彝良县| 方正县| 莱阳市| 兴安县| 隆尧县| 南投市| 奈曼旗| 秦皇岛市| 诏安县| 神农架林区| 绥芬河市| 会同县| 加查县| 宜良县| 精河县| 泽库县| 临潭县| 山丹县| 毕节市| 渭南市|