找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory of Linear Differential Equations; Marius Put,Michael F. Singer Book 2003 Springer-Verlag Berlin Heidelberg 2003 Arithmetic.A

[復(fù)制鏈接]
樓主: 游牧
31#
發(fā)表于 2025-3-26 21:00:22 | 只看該作者
32#
發(fā)表于 2025-3-27 05:00:18 | 只看該作者
Algorithmic Considerations.(.) is the usual one, namely .. We, furthermore, assume that there are algorithms to perform the field operations in . as well as algorithms to factor polynomials over .(.) (see [102, 234] for a formalization of this concept). Natural choices for . are ., any number field or the algebraic closure of ..
33#
發(fā)表于 2025-3-27 08:27:24 | 只看該作者
Monodromy, the Riemann-Hilbert Problem, and the Differential Galois Group matrix whose columns are the . independent solutions .,…, . then . is a fundamental matrix with entries in .({.?.}). One can normalize . such that .(.) is the identity matrix. The question we are interested in is:
34#
發(fā)表于 2025-3-27 12:07:00 | 只看該作者
Moduli for Singular Differential Equationsion of moduli spaces for algebraic curves of a given genus . ≥ 1. In order to obtain a fine moduli space one has to consider curves of genus . with additional finite data, namely a suitable level structure. The corresponding moduli functor is then representable and is represented by a fine moduli space (see Proposition 12.3).
35#
發(fā)表于 2025-3-27 16:39:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:08:08 | 只看該作者
Aktienanalyse in drei Schrittenis closed under all operations of linear algebra, i.e., kernels, cokernels, direct sums, and tensor products. Then . is also a neutral tannakian category and equivalent to Repr. for some affine group scheme ..
37#
發(fā)表于 2025-3-28 01:47:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:40:00 | 只看該作者
39#
發(fā)表于 2025-3-28 07:37:31 | 只看該作者
40#
發(fā)表于 2025-3-28 11:05:12 | 只看該作者
0072-7830 tannakian categories that are used. .This volume will become a standard reference for all mathematicians in this area of mathematics, including graduate students..978-3-642-62916-7978-3-642-55750-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
务川| 泽普县| 阿克苏市| 仙桃市| 新建县| 青川县| 三门峡市| 鲁甸县| 阳山县| 扎兰屯市| 集安市| 阿勒泰市| 望城县| 正宁县| 民县| 鸡泽县| 信阳市| 高平市| 铅山县| 绿春县| 东乌珠穆沁旗| 梅河口市| 巴青县| 厦门市| 澄迈县| 和田市| 杭锦后旗| 灵璧县| 上思县| 汝阳县| 樟树市| 巴中市| 伽师县| 潼南县| 施甸县| 泰安市| 社旗县| 长泰县| 都昌县| 旌德县| 荃湾区|