找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory Through Exercises; Juliusz Brzeziński Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 Galoi

[復(fù)制鏈接]
樓主: SPARK
21#
發(fā)表于 2025-3-25 05:46:34 | 只看該作者
https://doi.org/10.1007/978-3-319-46729-0in the modern presentation of Galois theory. In the exercises, we find Galois groups of many field extensions and we use also use this theorem for various problems on field extensions and their automorphism groups.
22#
發(fā)表于 2025-3-25 08:04:17 | 只看該作者
Assessment and Clinical Patterns,e of the problems are suitably structured in order to introduce some interesting topics that are typically not covered in standard texts on the subject, incl. Dedekind’s duality, Tschirnhausen’s transformations and the lunes of Hippocrates.
23#
發(fā)表于 2025-3-25 14:23:38 | 只看該作者
Solving Algebraic Equations,ing roots applied to coefficients. We give examples of quantic equations for which such formulae exist (e.g. de Moivre’s quintics) and show that the ideas which work for equations of degrees up to 4 have no evident generalizations. We also briefly discuss “casus irreducibilis” related to cubic equations.
24#
發(fā)表于 2025-3-25 17:26:31 | 只看該作者
25#
發(fā)表于 2025-3-25 20:29:05 | 只看該作者
Supplementary Problems,e of the problems are suitably structured in order to introduce some interesting topics that are typically not covered in standard texts on the subject, incl. Dedekind’s duality, Tschirnhausen’s transformations and the lunes of Hippocrates.
26#
發(fā)表于 2025-3-26 02:22:44 | 只看該作者
27#
發(fā)表于 2025-3-26 08:13:18 | 只看該作者
Airline Organization in the 1980sand splitting fields of polynomials form exactly the same class. We further discuss a normal closure of a finite field extension. Galois extensions are those which are normal and separable. The separable extensions are discussed in the next chapter.
28#
發(fā)表于 2025-3-26 11:20:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:01:56 | 只看該作者
30#
發(fā)表于 2025-3-26 17:02:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塘沽区| 阿合奇县| 游戏| 罗源县| 张家界市| 温宿县| 思南县| 山丹县| 安多县| 定陶县| 吴忠市| 喜德县| 宝山区| 沾益县| 辽源市| 岐山县| 巴林右旗| 昌宁县| 中卫市| 精河县| 盖州市| 涪陵区| 灵石县| 岑溪市| 广河县| 定州市| 武宣县| 库尔勒市| 南通市| 宜章县| 开远市| 昌黎县| 高尔夫| 邯郸市| 略阳县| 历史| 永靖县| 会泽县| 桂林市| 大埔县| 岳池县|