找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Groups over ?; Proceedings of a Wor Y. Ihara,K. Ribet,J.-P. Serre Conference proceedings 1989 Springer-Verlag New York Inc. 1989 Abe

[復(fù)制鏈接]
樓主: 迅速
11#
發(fā)表于 2025-3-23 12:00:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:39:08 | 只看該作者
Mahdieh Houshani,Seyed Yahya Salehi-LisarIf . is a smooth, projective variety over a number field ., then the absolute Galois group G. = Gal(./.) acts on the étale cohomology groups H.(., ?./?.(.)), where . = X X.. for an algebraic closure . of .. In this paper I study some properties of these G.-modules; in particular, I am interested in the corank of the Galois cohomology groups
13#
發(fā)表于 2025-3-23 20:09:19 | 只看該作者
Jessie L. Beier,jan jagodzinskiGiven a continuous homomorphism.where G. is the Galois group of the maximal algebraic extension of ? unramified outside the finite set . of primes of ?, the motivating problem of this paper is to study, in a systematic way, the possible liftings of ρ? to .-adic representations,..
14#
發(fā)表于 2025-3-23 23:14:19 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:00:31 | 只看該作者
Le Groupe Fondamental de la Droite Projective Moins Trois Points,Le présent article doit beaucoup à A. Grothendieck. Il a inventé la philosophie des motifs, qui est notre fil directeur. Il y a quelques cinq ans, il m’a aussi dit, avec force, que le complété profini . du groupe fondamental de X := P.(C) — {0,1, oo} , avec son action de Gal(./?) est un oject remarquable, et qu’il faudrait l’étudier.
17#
發(fā)表于 2025-3-24 12:52:35 | 只看該作者
,The Galois representation arising from P1 ? {0,1, ∞} and Tate twists of even degree,The canonical representation.of the absolute Galois group over the rationals in the outer automorphism group of the pro-? fundamental group.(?: a prime number) gives rise to an infinite sequence of solvable Galois extensions. over ?, unramified outside ?, satisfying the following properties [.].
18#
發(fā)表于 2025-3-24 16:11:35 | 只看該作者
19#
發(fā)表于 2025-3-24 19:16:17 | 只看該作者
Deforming Galois Representations,Given a continuous homomorphism.where G. is the Galois group of the maximal algebraic extension of ? unramified outside the finite set . of primes of ?, the motivating problem of this paper is to study, in a systematic way, the possible liftings of ρ? to .-adic representations,..
20#
發(fā)表于 2025-3-25 03:13:37 | 只看該作者
Eberhard Neumann,David Nachmansohngether with the corresponding examples are contained in the forthcoming lecture notes [.] (see also [.]). The rationality criteria in sections 4 and 5, the braid orbit theorem, and the twisted braid orbit theorem, are new. With the last one, the Mathieu group M. is realized as Galois group over ?.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秭归县| 秭归县| 柞水县| 阆中市| 龙山县| 子长县| 伊川县| 泉州市| 龙海市| 天峻县| 大姚县| 马鞍山市| 沁源县| 繁峙县| 巴青县| 五大连池市| 清新县| 宁城县| 大冶市| 朔州市| 黔江区| 奉节县| 江都市| 兴安县| 基隆市| 芦溪县| 韶关市| 常宁市| 东乡族自治县| 清流县| 建平县| 光泽县| 麻栗坡县| 华安县| 土默特左旗| 宜宾市| 横山县| 弥勒县| 沛县| 米泉市| 丰原市|