找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: G.W. Stewart; Selected Works with Misha E. Kilmer,Dianne P. O’Leary Book 2010 Springer Science+Business Media, LLC 2010 Algebra.Computer-A

[復(fù)制鏈接]
樓主: HAND
11#
發(fā)表于 2025-3-23 13:27:23 | 只看該作者
Organisation und Geschichte des Kongresses,In this collection of papers, Pete Stewart established the foundations for the perturbation theory of invariant subspaces. He introduced two crucial concepts that allow a systematic approach toward such a perturbation theory: subspace rotation and operator separation. These two concepts form the guiding principle in most of these papers.
12#
發(fā)表于 2025-3-23 15:51:33 | 只看該作者
13#
發(fā)表于 2025-3-23 18:25:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:51:20 | 只看該作者
50 Jahre Universit?ts-Informatik in MünchenThe preceding seven chapters of this commentary had outlined some of Stewart’s important contributions to matrix algorithms and matrix perturbation theory.
15#
發(fā)表于 2025-3-24 02:24:43 | 只看該作者
Publications, Honors, and StudentsDissertation: G. W. Stewart III, “Some Topics in Numerical Analysis,” University of Tennessee. Published as Technical Report ORNL-4303, Oak Ridge National Laboratory, September 1968.
16#
發(fā)表于 2025-3-24 09:19:45 | 只看該作者
Introduction to the CommentariesIn research spanning over 40 years, G.W. (Pete) Stewart has made foundational contributions to numerical linear algebra.
17#
發(fā)表于 2025-3-24 12:59:53 | 只看該作者
The Eigenproblem and Invariant Subspaces: Perturbation TheoryIn this collection of papers, Pete Stewart established the foundations for the perturbation theory of invariant subspaces. He introduced two crucial concepts that allow a systematic approach toward such a perturbation theory: subspace rotation and operator separation. These two concepts form the guiding principle in most of these papers.
18#
發(fā)表于 2025-3-24 16:00:20 | 只看該作者
19#
發(fā)表于 2025-3-24 21:51:57 | 只看該作者
Krylov Subspace Methods for the EigenproblemThese papers comprise some of Stewart’s recent contributions to the development and analysis of iterative algorithms based on Krylov subspace methods for computing eigenvalues.
20#
發(fā)表于 2025-3-25 00:25:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇南市| 布尔津县| 资兴市| 武鸣县| 宽城| 沁阳市| 阿坝| 安福县| 巴南区| 阿拉善盟| 襄樊市| 皮山县| 新源县| 金门县| 奎屯市| 吴江市| 滦南县| 铅山县| 且末县| 上虞市| 西峡县| 江口县| 时尚| 朝阳市| 临武县| 宜宾市| 新乡市| 景谷| 瓦房店市| 泰兴市| 马鞍山市| 兴城市| 朝阳区| 承德县| 合肥市| 华亭县| 奇台县| 宁阳县| 都昌县| 民勤县| 秦安县|