找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fusion Methods for Unsupervised Learning Ensembles; Bruno Baruque,Emilio Corchado Book 2011 Springer Berlin Heidelberg 2011 Artificial Neu

[復(fù)制鏈接]
查看: 14578|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:51:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fusion Methods for Unsupervised Learning Ensembles
編輯Bruno Baruque,Emilio Corchado
視頻videohttp://file.papertrans.cn/351/350952/350952.mp4
概述Recent research in Fusion Methods for Unsupervised Learning Ensembles.Examines the potential of the ensemble meta-algorithm.Written by leading experts in the field
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Fusion Methods for Unsupervised Learning Ensembles;  Bruno Baruque,Emilio Corchado Book 2011 Springer Berlin Heidelberg 2011 Artificial Neu
描述The application of a “committee of experts” or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusi
出版日期Book 2011
關(guān)鍵詞Artificial Neural Networks; Computational Intelligence; Ensemble Learning; Fusion Methods; Unsupervised
版次1
doihttps://doi.org/10.1007/978-3-642-16205-3
isbn_softcover978-3-642-42328-4
isbn_ebook978-3-642-16205-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Berlin Heidelberg 2011
The information of publication is updating

書目名稱Fusion Methods for Unsupervised Learning Ensembles影響因子(影響力)




書目名稱Fusion Methods for Unsupervised Learning Ensembles影響因子(影響力)學(xué)科排名




書目名稱Fusion Methods for Unsupervised Learning Ensembles網(wǎng)絡(luò)公開度




書目名稱Fusion Methods for Unsupervised Learning Ensembles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fusion Methods for Unsupervised Learning Ensembles被引頻次




書目名稱Fusion Methods for Unsupervised Learning Ensembles被引頻次學(xué)科排名




書目名稱Fusion Methods for Unsupervised Learning Ensembles年度引用




書目名稱Fusion Methods for Unsupervised Learning Ensembles年度引用學(xué)科排名




書目名稱Fusion Methods for Unsupervised Learning Ensembles讀者反饋




書目名稱Fusion Methods for Unsupervised Learning Ensembles讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:18:42 | 只看該作者
第150952主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:21:39 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:54:34 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:24:58 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:27:12 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 21:03:33 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:19:06 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:37:46 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:41:14 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 锡林浩特市| 佛冈县| 扎鲁特旗| 龙陵县| 色达县| 百色市| 沂源县| 金阳县| 赤峰市| 和田县| 筠连县| 什邡市| 南汇区| 仲巴县| 罗田县| 涿州市| 宜阳县| 连山| 克什克腾旗| 安图县| 马山县| 大丰市| 龙川县| 台东市| 虹口区| 南城县| 湛江市| 同德县| 昌图县| 新邵县| 衡山县| 来凤县| 富蕴县| 静乐县| 长海县| 开鲁县| 奇台县| 永靖县| 九龙城区| 北京市|