找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fundamental Mathematical Concepts for Machine Learning in Science; Umberto Michelucci Textbook 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 32863|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:07:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science
編輯Umberto Michelucci
視頻videohttp://file.papertrans.cn/351/350003/350003.mp4
概述Clearly explains the mathematical underpinnings essential for a robust understanding of machine learning algorithms.Coverage is tailored to students and researchers in all natural science areas, in ad
圖書(shū)封面Titlebook: Fundamental Mathematical Concepts for Machine Learning in Science;  Umberto Michelucci Textbook 2024 The Editor(s) (if applicable) and The
描述.This book is for individuals with a scientific background who aspire to apply machine learning within various natural science disciplines—such as physics, chemistry, biology, medicine, psychology and many more. It elucidates core mathematical concepts in an accessible and straightforward manner, maintaining rigorous mathematical integrity. For readers more versed in mathematics, the book includes advanced sections that are not prerequisites for the initial reading. It ensures concepts are clearly defined and theorems are proven where it‘s pertinent. Machine learning transcends the mere implementation and training of algorithms; it encompasses the broader challenges of constructing robust datasets, model validation, addressing imbalanced datasets, and fine-tuning hyperparameters. These topics are thoroughly examined within the text, along with the theoretical foundations underlying these methods. Rather than concentrating on particular algorithms this book focuses on the comprehensive concepts and theories essential for their application. It stands as an indispensable resource for any scientist keen on integrating machine learning effectively into their research...Numerous texts de
出版日期Textbook 2024
關(guān)鍵詞Machine Learning; Mathematics; Model Validation; Sampling Theory; Hyper-parameter Tuning; Linear Algebra
版次1
doihttps://doi.org/10.1007/978-3-031-56431-4
isbn_softcover978-3-031-56433-8
isbn_ebook978-3-031-56431-4
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science影響因子(影響力)




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science影響因子(影響力)學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science被引頻次




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science被引頻次學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science年度引用




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science年度引用學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science讀者反饋




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:21 | 只看該作者
第150003主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:48:13 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:47:42 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:35:35 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:03:59 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:25:05 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:56:34 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:51:38 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:49:21 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵川县| 陆川县| 大洼县| 连山| 高邑县| 屯留县| 邢台县| 太和县| 东乌珠穆沁旗| 沁水县| 凤凰县| 万州区| 根河市| 泗洪县| 枣强县| 石屏县| 宜兰市| 夹江县| 定远县| 清苑县| 师宗县| 泰兴市| 沙湾县| 资兴市| 林西县| 彭泽县| 同心县| 项城市| 铜川市| 南漳县| 彭阳县| 雅安市| 鄂托克前旗| 芜湖县| 马关县| 梅河口市| 垣曲县| 灌阳县| 于田县| 泊头市| 衡阳市|