找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Functional Analytic Techniques for Diffusion Processes; Kazuaki Taira Book 2022 The Editor(s) (if applicable) and The Author(s), under exc

[復(fù)制鏈接]
查看: 8815|回復(fù): 51
樓主
發(fā)表于 2025-3-21 18:58:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Functional Analytic Techniques for Diffusion Processes
編輯Kazuaki Taira
視頻videohttp://file.papertrans.cn/350/349619/349619.mp4
概述Guides readers to a mathematical crossroads in analysis.Provides powerful techniques of functional analysis (macroscopic approach) for the study of diffusion processes.Furnishes a profound stochastic
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Functional Analytic Techniques for Diffusion Processes;  Kazuaki Taira Book 2022 The Editor(s) (if applicable) and The Author(s), under exc
描述This book is an easy-to-read reference providing a link between functional analysis and diffusion processes. More precisely, the book takes readers to a mathematical crossroads of functional analysis (macroscopic approach), partial differential equations (mesoscopic approach), and probability (microscopic approach) via the mathematics needed for the hard parts of diffusion processes. This work brings these three fields of analysis together and provides a profound stochastic insight (microscopic approach) into the study of elliptic boundary value problems..The author does a massive study of diffusion processes from a broad perspective and explains mathematical matters in a more easily readable way than one usually would find. The book is amply illustrated; 14 tables and 141 figures are provided with appropriate captions in such a fashion that readers can easily understand powerful techniques of functional analysis for the study of diffusion processes in probability..The scope of the author’s work has been and continues to be powerful methods of functional analysis for future research of elliptic boundary value problems and Markov processes via semigroups. A broad spectrum of readers
出版日期Book 2022
關(guān)鍵詞Diffusion process; Markov process; Feller semigroup; Elliptic boundary value problem; Pseudo-differentia
版次1
doihttps://doi.org/10.1007/978-981-19-1099-9
isbn_softcover978-981-19-1101-9
isbn_ebook978-981-19-1099-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Functional Analytic Techniques for Diffusion Processes影響因子(影響力)




書目名稱Functional Analytic Techniques for Diffusion Processes影響因子(影響力)學(xué)科排名




書目名稱Functional Analytic Techniques for Diffusion Processes網(wǎng)絡(luò)公開度




書目名稱Functional Analytic Techniques for Diffusion Processes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Functional Analytic Techniques for Diffusion Processes被引頻次




書目名稱Functional Analytic Techniques for Diffusion Processes被引頻次學(xué)科排名




書目名稱Functional Analytic Techniques for Diffusion Processes年度引用




書目名稱Functional Analytic Techniques for Diffusion Processes年度引用學(xué)科排名




書目名稱Functional Analytic Techniques for Diffusion Processes讀者反饋




書目名稱Functional Analytic Techniques for Diffusion Processes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:06 | 只看該作者
第149619主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:39:36 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:52:04 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:36:09 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:49:01 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:48:50 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:30:46 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:51:48 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:12:21 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑山县| 兰溪市| 苏尼特左旗| 贡觉县| 丹东市| 亳州市| 奉节县| 彭水| 清镇市| 黑河市| 奈曼旗| 开化县| 沅陵县| 吉木乃县| 突泉县| 南丰县| 通江县| 常州市| 盐亭县| 雷波县| 孟津县| 泸水县| 聊城市| 教育| 台前县| 泰和县| 噶尔县| 永德县| 筠连县| 马鞍山市| 淅川县| 历史| 内黄县| 九龙县| 博野县| 吉林省| 周宁县| 大埔区| 定陶县| 定兴县| 吉隆县|