找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Concavity in Fuzzy Optimization and Decision Analysis; Jaroslav Ramík,Milan Vlach Book 2002 Springer Science+Business Media Ne

[復制鏈接]
樓主: Optician
11#
發(fā)表于 2025-3-23 10:03:27 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:02 | 只看該作者
13#
發(fā)表于 2025-3-23 18:21:05 | 只看該作者
Kommunikation zwischen Mensch und Maschine,We assume that the reader is familiar with standard set theoretic concepts, introductory elements of linear algebra, and basic material from calculus. To avoid misunderstandings and for reader’s convenience, we review some basic concepts, results and notations.
14#
發(fā)表于 2025-3-24 00:37:19 | 只看該作者
15#
發(fā)表于 2025-3-24 05:42:22 | 只看該作者
https://doi.org/10.1007/978-3-662-49429-5Most frequent mathematical programming problems are linear programming problems. In this chapter we are concerned with fuzzy linear programming problem related to linear programming problems in the following form.
16#
發(fā)表于 2025-3-24 10:34:14 | 只看該作者
17#
發(fā)表于 2025-3-24 12:34:35 | 只看該作者
Generalized Concave FunctionsThe notion of concavity of real-valued functions of real variables and its various generalizations have found many applications in economics and engineering. We refer to [3] for a detailed treatment of concavity and some of its generalizations.
18#
發(fā)表于 2025-3-24 17:38:44 | 只看該作者
Fuzzy Linear ProgrammingMost frequent mathematical programming problems are linear programming problems. In this chapter we are concerned with fuzzy linear programming problem related to linear programming problems in the following form.
19#
發(fā)表于 2025-3-24 21:32:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
甘孜县| 章丘市| 行唐县| 互助| 克拉玛依市| 乌恰县| 沿河| 凯里市| 仙游县| 遂宁市| 方山县| 蒙山县| 新干县| 三门县| 中山市| 海原县| 大城县| 金门县| 河池市| 墨竹工卡县| 青海省| 射洪县| 通许县| 资源县| 稻城县| 阳东县| 九龙县| 当阳市| 江永县| 宜春市| 鄂伦春自治旗| 通河县| 新营市| 安塞县| 江北区| 上饶市| 湟中县| 根河市| 乐业县| 微博| 浦江县|