找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: From Approximate Variation to Pointwise Selection Principles; Vyacheslav V. Chistyakov Book 2021 The Author(s), under exclusive license to

[復(fù)制鏈接]
查看: 29540|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:51:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱From Approximate Variation to Pointwise Selection Principles
編輯Vyacheslav V. Chistyakov
視頻videohttp://file.papertrans.cn/349/348504/348504.mp4
概述Explicit evaluation and approximation of bounded variation functionals on metric spaces.Highlighted feature includes a deep study of a special type of lower semicontinuous functionals.Accessible to up
叢書名稱SpringerBriefs in Optimization
圖書封面Titlebook: From Approximate Variation to Pointwise Selection Principles;  Vyacheslav V. Chistyakov Book 2021 The Author(s), under exclusive license to
描述The book addresses the minimization of special lower semicontinuous functionals over closed balls in metric spaces, called the approximate variation. The new notion of approximate variation contains more information about the bounded variation functional and has the following features: the infimum in the definition of approximate variation is not attained in general and the total Jordan variation of a function is obtained by a limiting procedure as a parameter tends to zero. By means of the approximate variation, we are able to characterize regulated functions in a generalized sense and provide powerful compactness tools in the topology of pointwise convergence, conventionally called pointwise selection principles..?.The book presents a thorough, self-contained study of the approximate variation and results which were not published previously in book form. The approximate variation is illustrated by a large number of examples designed specifically for this study. The discussion elaborates on the state-of-the-art pointwise selection principles applied to functions with values in metric spaces, normed spaces, reflexive Banach spaces, and Hilbert spaces.? The highlighted feature inclu
出版日期Book 2021
關(guān)鍵詞semicontinuous functionals; metric spaces; pointwise selection principles; approximate variation; Dirich
版次1
doihttps://doi.org/10.1007/978-3-030-87399-8
isbn_softcover978-3-030-87398-1
isbn_ebook978-3-030-87399-8Series ISSN 2190-8354 Series E-ISSN 2191-575X
issn_series 2190-8354
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2021
The information of publication is updating

書目名稱From Approximate Variation to Pointwise Selection Principles影響因子(影響力)




書目名稱From Approximate Variation to Pointwise Selection Principles影響因子(影響力)學(xué)科排名




書目名稱From Approximate Variation to Pointwise Selection Principles網(wǎng)絡(luò)公開度




書目名稱From Approximate Variation to Pointwise Selection Principles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱From Approximate Variation to Pointwise Selection Principles被引頻次




書目名稱From Approximate Variation to Pointwise Selection Principles被引頻次學(xué)科排名




書目名稱From Approximate Variation to Pointwise Selection Principles年度引用




書目名稱From Approximate Variation to Pointwise Selection Principles年度引用學(xué)科排名




書目名稱From Approximate Variation to Pointwise Selection Principles讀者反饋




書目名稱From Approximate Variation to Pointwise Selection Principles讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:50:35 | 只看該作者
第148504主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:49:58 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:13:16 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:29:17 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:23:27 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:10:22 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:30:00 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:25:54 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:25:14 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 南平市| 肥城市| 镇平县| 崇信县| 奉新县| 稻城县| 甘洛县| 双城市| 宣化县| 普兰店市| 井陉县| 德昌县| 榆树市| 广宁县| 静乐县| 沙雅县| 鹤山市| 金平| 万载县| 徐闻县| 醴陵市| 海原县| 衡阳市| 普格县| 定日县| 娱乐| 南陵县| 潞西市| 常熟市| 潍坊市| 永善县| 康马县| 汕头市| 梁平县| 会泽县| 普宁市| 江达县| 什邡市| 清流县| 墨脱县|