找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractional-in-Time Semilinear Parabolic Equations and Applications; Ciprian G. Gal,Mahamadi Warma Textbook 2020 Springer Nature Switzerlan

[復(fù)制鏈接]
查看: 21016|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:19:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications
編輯Ciprian G. Gal,Mahamadi Warma
視頻videohttp://file.papertrans.cn/348/347420/347420.mp4
概述Provides a general framework which will facilitate the further study of nonlocal reaction-diffusion systems.Addresses the existence of (non-regular) mild solutions, strong solutions, and the global re
叢書名稱Mathématiques et Applications
圖書封面Titlebook: Fractional-in-Time Semilinear Parabolic Equations and Applications;  Ciprian G. Gal,Mahamadi Warma Textbook 2020 Springer Nature Switzerlan
描述.This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra–Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics...Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions..This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology, whose research involves partial differential equations.?.
出版日期Textbook 2020
關(guān)鍵詞Semilinear parabolic equations; Caputo fractional derivative; Anomalous diffusion; Fractional Laplace o
版次1
doihttps://doi.org/10.1007/978-3-030-45043-4
isbn_softcover978-3-030-45042-7
isbn_ebook978-3-030-45043-4Series ISSN 1154-483X Series E-ISSN 2198-3275
issn_series 1154-483X
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications影響因子(影響力)




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications影響因子(影響力)學(xué)科排名




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications網(wǎng)絡(luò)公開度




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications被引頻次




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications被引頻次學(xué)科排名




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications年度引用




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications年度引用學(xué)科排名




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications讀者反饋




書目名稱Fractional-in-Time Semilinear Parabolic Equations and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:39 | 只看該作者
第147420主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:34:18 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:57:01 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:58:46 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:49:33 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:12:26 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:20:14 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:10:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:29:05 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘西| 辉南县| 襄城县| 彝良县| 皋兰县| 潜江市| 扬中市| 长宁县| 徐汇区| 司法| 新津县| 龙游县| 同德县| 石门县| 鲁山县| 阿坝县| 海安县| 陆良县| 东宁县| 贡嘎县| 大埔区| 惠安县| 蒙自县| 疏勒县| 梅河口市| 永胜县| 府谷县| 垣曲县| 获嘉县| 陆丰市| 湖州市| 开阳县| 武穴市| 浠水县| 东阳市| 曲周县| 翁牛特旗| 夏邑县| 南靖县| 潞城市| 乐业县|