找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractional Fields and Applications; Serge Cohen,Jacques Istas Book 2013 Springer-Verlag Berlin Heidelberg 2013 Lévy fields.fractional Brow

[復(fù)制鏈接]
查看: 39699|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:09:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Fractional Fields and Applications
編輯Serge Cohen,Jacques Istas
視頻videohttp://file.papertrans.cn/348/347402/347402.mp4
概述Stated and proved properties of fractional Brownian fields.Efficient statistical inference of fractional parameters.Efficient simulation algorithm of fractional fields
叢書(shū)名稱Mathématiques et Applications
圖書(shū)封面Titlebook: Fractional Fields and Applications;  Serge Cohen,Jacques Istas Book 2013 Springer-Verlag Berlin Heidelberg 2013 Lévy fields.fractional Brow
描述This book focuses mainly on fractional Brownian fields and their extensions. It has been used to teach graduate students at Grenoble and Toulouse‘s Universities. It is as self-contained as possible and contains numerous exercises, with solutions in an appendix. After a foreword by Stéphane Jaffard, a long first chapter is devoted to classical results from stochastic fields and fractal analysis. A central notion throughout this book is self-similarity, which is dealt with in a second chapter with a particular emphasis on the celebrated Gaussian self-similar fields, called fractional Brownian fields after Mandelbrot and Van Ness‘s seminal paper. Fundamental properties of fractional Brownian fields are then stated and proved. The second central notion of this book is the so-called local asymptotic self-similarity (in short lass), which is a local version of self-similarity, defined in the third chapter. A lengthy study is devoted to lass fields with finite variance. Among these lass fields, we find both Gaussian fields and non-Gaussian fields, called Lévy fields. The Lévy fields can be viewed as bridges between fractional Brownian fields and stable self-similar fields. A further key i
出版日期Book 2013
關(guān)鍵詞Lévy fields; fractional Brownian fields; self-similarity; simulation; statistics; complexity
版次1
doihttps://doi.org/10.1007/978-3-642-36739-7
isbn_softcover978-3-642-36738-0
isbn_ebook978-3-642-36739-7Series ISSN 1154-483X Series E-ISSN 2198-3275
issn_series 1154-483X
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書(shū)目名稱Fractional Fields and Applications影響因子(影響力)




書(shū)目名稱Fractional Fields and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Fractional Fields and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Fractional Fields and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Fractional Fields and Applications被引頻次




書(shū)目名稱Fractional Fields and Applications被引頻次學(xué)科排名




書(shū)目名稱Fractional Fields and Applications年度引用




書(shū)目名稱Fractional Fields and Applications年度引用學(xué)科排名




書(shū)目名稱Fractional Fields and Applications讀者反饋




書(shū)目名稱Fractional Fields and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:19:28 | 只看該作者
第147402主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:24:38 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:22:12 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:11:53 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:59:57 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:32:23 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:15:49 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:02:15 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:55:14 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常宁市| 临湘市| 万安县| 宝山区| 肃宁县| 海城市| 平塘县| 迁安市| 平凉市| 镇远县| 区。| 九江市| 彰武县| 扬州市| 衢州市| 江津市| 洮南市| 遂宁市| 廉江市| 通山县| 古交市| 霍山县| 攀枝花市| 华蓥市| 平顺县| 奉新县| 枣阳市| 都江堰市| 南投市| 阿克| 黔东| 会宁县| 阿拉善左旗| 海原县| 偏关县| 哈尔滨市| 高要市| 大连市| 栾川县| 巩义市| 三亚市|