找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractional Differential Equations; Modeling, Discretiza Angelamaria Cardone,Marco Donatelli,Marina Popoliz Conference proceedings 2023 The

[復制鏈接]
查看: 26749|回復: 43
樓主
發(fā)表于 2025-3-21 17:39:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fractional Differential Equations
副標題Modeling, Discretiza
編輯Angelamaria Cardone,Marco Donatelli,Marina Popoliz
視頻videohttp://file.papertrans.cn/348/347390/347390.mp4
概述New results in numerical analysis of fractional differential equations.Relationships between applications and numerical aspects.Bridge between schemes for differential equations and numerical linear a
叢書名稱Springer INdAM Series
圖書封面Titlebook: Fractional Differential Equations; Modeling, Discretiza Angelamaria Cardone,Marco Donatelli,Marina Popoliz Conference proceedings 2023 The
描述.The content of the book collects some contributions related to the talks presented during the INdAM Workshop "Fractional Differential Equations: Modelling, Discretization, and Numerical Solvers", held in Rome, Italy, on July 12–14, 2021. All contributions are original and not published elsewhere...The main topic of the book is fractional calculus, a topic that addresses the study and application of integrals and derivatives of noninteger order. These operators, unlike the classic operators of integer order, are nonlocal operators and are better suited to describe phenomena with memory (with respect to time and/or space). Although the basic ideas of fractional calculus go back over three centuries, only in recent decades there has been a rapid increase in interest in this field of research due not only to the increasing use of fractional calculus in applications in biology, physics, engineering, probability, etc., but also thanks to the availability of new and more powerful numerical tools that allow for an efficient solution of problems that until a few years ago appeared unsolvable. The analytical solution of fractional differential equations (FDEs) appears even more difficult th
出版日期Conference proceedings 2023
關鍵詞Numerical Analysis; Numerical linear algebra; Fractional Laplacian; Mittag-Leffler function; Matrix func
版次1
doihttps://doi.org/10.1007/978-981-19-7716-9
isbn_softcover978-981-19-7718-3
isbn_ebook978-981-19-7716-9Series ISSN 2281-518X Series E-ISSN 2281-5198
issn_series 2281-518X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Fractional Differential Equations影響因子(影響力)




書目名稱Fractional Differential Equations影響因子(影響力)學科排名




書目名稱Fractional Differential Equations網(wǎng)絡公開度




書目名稱Fractional Differential Equations網(wǎng)絡公開度學科排名




書目名稱Fractional Differential Equations被引頻次




書目名稱Fractional Differential Equations被引頻次學科排名




書目名稱Fractional Differential Equations年度引用




書目名稱Fractional Differential Equations年度引用學科排名




書目名稱Fractional Differential Equations讀者反饋




書目名稱Fractional Differential Equations讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:21:57 | 只看該作者
第147390主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:45:23 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:59:03 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:03:41 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:28:11 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:49:17 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:38:51 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:32:40 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:21:04 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岚皋县| 马龙县| 崇义县| 西昌市| 安吉县| 长宁县| 永嘉县| 青海省| 静乐县| 凌云县| 广宗县| 勃利县| 威宁| 文登市| 肇源县| 大悟县| 五峰| 清苑县| 宜都市| 绥江县| 贵阳市| 银川市| 吉林省| 无锡市| 汾阳市| 济阳县| 潼南县| 施甸县| 梓潼县| 隆林| 章丘市| 平阳县| 双鸭山市| 宜兴市| 松原市| 辽阳市| 太仓市| 东乌| 焉耆| 安岳县| 临泽县|