找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractal Dimension for Fractal Structures; With Applications to Manuel Fernández-Martínez,Juan Luis García Guirao, Book 2019 Springer Nature

[復(fù)制鏈接]
查看: 47993|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:33:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fractal Dimension for Fractal Structures
副標(biāo)題With Applications to
編輯Manuel Fernández-Martínez,Juan Luis García Guirao,
視頻videohttp://file.papertrans.cn/348/347313/347313.mp4
概述Develops a new theory of fractal dimension using the topological concept of a fractal structure.Provides a rigorous description of the first-known (and currently, the only) general algorithm for calcu
叢書名稱SEMA SIMAI Springer Series
圖書封面Titlebook: Fractal Dimension for Fractal Structures; With Applications to Manuel Fernández-Martínez,Juan Luis García Guirao, Book 2019 Springer Nature
描述.This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. ..In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithmsfor properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in rea
出版日期Book 2019
關(guān)鍵詞fractal; fractal structure; fractal dimension; Hausdorff dimension; Hurst exponent
版次1
doihttps://doi.org/10.1007/978-3-030-16645-8
isbn_ebook978-3-030-16645-8Series ISSN 2199-3041 Series E-ISSN 2199-305X
issn_series 2199-3041
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Fractal Dimension for Fractal Structures影響因子(影響力)




書目名稱Fractal Dimension for Fractal Structures影響因子(影響力)學(xué)科排名




書目名稱Fractal Dimension for Fractal Structures網(wǎng)絡(luò)公開度




書目名稱Fractal Dimension for Fractal Structures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fractal Dimension for Fractal Structures被引頻次




書目名稱Fractal Dimension for Fractal Structures被引頻次學(xué)科排名




書目名稱Fractal Dimension for Fractal Structures年度引用




書目名稱Fractal Dimension for Fractal Structures年度引用學(xué)科排名




書目名稱Fractal Dimension for Fractal Structures讀者反饋




書目名稱Fractal Dimension for Fractal Structures讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:40 | 只看該作者
第147313主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:41:03 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:17:32 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:24:36 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:03:26 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:00:30 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 01:03:33 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:43:22 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:32:21 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻城市| 逊克县| 丰镇市| 酒泉市| 甘德县| 福清市| 武城县| 拜泉县| 太仆寺旗| 镇雄县| 阿拉善左旗| 浦江县| 固安县| 白河县| 娱乐| 海淀区| 如皋市| 金坛市| 三江| 永年县| 西吉县| 绵阳市| 清苑县| 泸溪县| 灵川县| 沁源县| 宜君县| 寿阳县| 榆社县| 庆安县| 乌兰县| 平湖市| 沐川县| 华池县| 新野县| 兴海县| 长海县| 长寿区| 镇宁| 射阳县| 固始县|