找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fourier Integral Operators; J.J. Duistermaat Textbook 2011 Birkh?user Boston 2011 Distribution.Fourier transform.Fourier transformation.La

[復(fù)制鏈接]
查看: 11124|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:51:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Fourier Integral Operators
編輯J.J. Duistermaat
視頻videohttp://file.papertrans.cn/348/347248/347248.mp4
概述Based on author’s original lecture notes.Covers a broad range of topics.Useful for both practitioners and students.Applications put theory in context.Includes supplementary material:
叢書(shū)名稱(chēng)Modern Birkh?user Classics
圖書(shū)封面Titlebook: Fourier Integral Operators;  J.J. Duistermaat Textbook 2011 Birkh?user Boston 2011 Distribution.Fourier transform.Fourier transformation.La
描述More than twenty years ago I gave a course on Fourier Integral Op- erators at the Catholic University of Nijmegen (1970-71) from which a set of lecture notes were written up; the Courant Institute of Mathematical Sciences in New York distributed these notes for many years, but they be- came increasingly difficult to obtain. The current text is essentially a nicely TeXed version of those notes with some minor additions (e.g., figures) and corrections. Apparently an attractive aspect of our approach to Fourier Integral Operators was its introduction to symplectic differential geometry, the basic facts of which are needed for making the step from the local definitions to the global calculus. A first example of the latter is the definition of the wave front set of a distribution in terms of testing with oscillatory functions. This is obviously coordinate-invariant and automatically realizes the wave front set as a subset of the cotangent bundle, the symplectic manifold in which the global calculus takes place.
出版日期Textbook 2011
關(guān)鍵詞Distribution; Fourier transform; Fourier transformation; Lagragian manifolds; Operator; Transformation; ca
版次1
doihttps://doi.org/10.1007/978-0-8176-8108-1
isbn_softcover978-0-8176-8107-4
isbn_ebook978-0-8176-8108-1Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightBirkh?user Boston 2011
The information of publication is updating

書(shū)目名稱(chēng)Fourier Integral Operators影響因子(影響力)




書(shū)目名稱(chēng)Fourier Integral Operators影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Fourier Integral Operators網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Fourier Integral Operators網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Fourier Integral Operators被引頻次




書(shū)目名稱(chēng)Fourier Integral Operators被引頻次學(xué)科排名




書(shū)目名稱(chēng)Fourier Integral Operators年度引用




書(shū)目名稱(chēng)Fourier Integral Operators年度引用學(xué)科排名




書(shū)目名稱(chēng)Fourier Integral Operators讀者反饋




書(shū)目名稱(chēng)Fourier Integral Operators讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:29 | 只看該作者
第147248主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:54:17 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:52:11 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:38:17 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:28:53 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:47:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:29:50 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:38:01 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:16:39 | 只看該作者
Bernd Silbermannry is also a continuum of human endeavours towards ensuring the access to water over an expanding space and time. The presentation of the important elements of history of the region as related to water will pro978-94-017-8142-8978-1-4020-5414-3Series ISSN 0921-092X Series E-ISSN 1872-4663
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连州市| 贡觉县| 老河口市| 安国市| 横峰县| 镇坪县| 永德县| 富锦市| 固原市| 拉萨市| 东明县| 深州市| 河池市| 玉田县| 建德市| 长武县| 如皋市| 红河县| 哈尔滨市| 女性| 贺州市| 隆尧县| 韶山市| 五家渠市| 湘潭县| 洛川县| 辽阳市| 舞钢市| 白朗县| 翼城县| 罗田县| 台中县| 嘉荫县| 公安县| 广东省| 巢湖市| 乐陵市| 东乌珠穆沁旗| 佛教| 通州区| 濮阳县|