找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fourier Analysis of Economic Phenomena; Toru Maruyama Book 2018 Springer Nature Singapore Pte Ltd. 2018 Fourier analysis.business cycle.Bo

[復(fù)制鏈接]
查看: 30932|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:25:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fourier Analysis of Economic Phenomena
編輯Toru Maruyama
視頻videohttp://file.papertrans.cn/348/347242/347242.mp4
概述Is the first book to explain how to apply Fourier analysis in business cycle theory in a mathematically rigorous manner.Provides an explanation of Fourier analysis of generalized functions, which is i
叢書名稱Monographs in Mathematical Economics
圖書封面Titlebook: Fourier Analysis of Economic Phenomena;  Toru Maruyama Book 2018 Springer Nature Singapore Pte Ltd. 2018 Fourier analysis.business cycle.Bo
描述This is the first monograph that discusses in detail the interactions between Fourier analysis and dynamic economic theories, in particular, business cycles..Many economic theories have analyzed cyclical behaviors of economic variables. In this book, the focus is on a couple of trials: (1) the Kaldor theory and (2) the Slutsky effect. The Kaldor theory tries to explain business fluctuations in terms of nonlinear, 2nd-order ordinary differential equations (ODEs). In order to explain periodic behaviors of a solution, the Hopf-bifurcation theorem frequently plays a key role. Slutsky‘s idea is to look at the periodic movement as an overlapping effect of random shocks. The Slutsky process is a weakly stationary process, the periodic (or almost periodic) behavior of which can be analyzed by the Bochner theorem. The goal of this book is to give a comprehensive and rigorous justification of these ideas. Therefore, the aim is first to give a complete theory that supports the Hopftheorem and to prove the existence of periodic solutions of ODEs; and second to explain the mathematical structure of the Bochner theorem and its relation to periodic (or almost periodic) behaviors of weakly station
出版日期Book 2018
關(guān)鍵詞Fourier analysis; business cycle; Bochner Theorem; Kaldor-Kalecki theory; Slutsky effect
版次1
doihttps://doi.org/10.1007/978-981-13-2730-8
isbn_ebook978-981-13-2730-8Series ISSN 2364-8279 Series E-ISSN 2364-8287
issn_series 2364-8279
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Fourier Analysis of Economic Phenomena影響因子(影響力)




書目名稱Fourier Analysis of Economic Phenomena影響因子(影響力)學(xué)科排名




書目名稱Fourier Analysis of Economic Phenomena網(wǎng)絡(luò)公開度




書目名稱Fourier Analysis of Economic Phenomena網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fourier Analysis of Economic Phenomena被引頻次




書目名稱Fourier Analysis of Economic Phenomena被引頻次學(xué)科排名




書目名稱Fourier Analysis of Economic Phenomena年度引用




書目名稱Fourier Analysis of Economic Phenomena年度引用學(xué)科排名




書目名稱Fourier Analysis of Economic Phenomena讀者反饋




書目名稱Fourier Analysis of Economic Phenomena讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:17 | 只看該作者
第147242主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:54:21 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:41:06 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:54:37 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:58:03 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:44:47 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:37:34 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:59:45 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:37:32 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木萨尔县| 吉木乃县| 桂平市| 沅江市| 秦皇岛市| 松江区| 柳州市| 和平县| 北川| 万盛区| 华宁县| 临沂市| 吉林市| 湾仔区| 龙江县| 关岭| 仁化县| 莆田市| 太仆寺旗| 吴忠市| 凭祥市| 铁岭市| 旬邑县| 满城县| 济南市| 黄龙县| 郑州市| 玛多县| 江陵县| 米林县| 柳林县| 成武县| 信阳市| 施秉县| 屏边| 邹城市| 阿图什市| 资兴市| 河南省| 杭州市| 连州市|