找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Geometric Algebra Computing; Dietmar Hildenbrand Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 CLUCalc.GPGPU.animati

[復制鏈接]
查看: 42155|回復: 56
樓主
發(fā)表于 2025-3-21 20:08:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foundations of Geometric Algebra Computing
編輯Dietmar Hildenbrand
視頻videohttp://file.papertrans.cn/347/346976/346976.mp4
概述Defines geometric algebra computing as the geometrically intuitive development of algorithms with a focus on their efficient implementation.Author anticipates the forthcoming widespread adoption of pa
叢書名稱Geometry and Computing
圖書封面Titlebook: Foundations of Geometric Algebra Computing;  Dietmar Hildenbrand Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 CLUCalc.GPGPU.animati
描述.The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics..This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain exp
出版日期Textbook 2013
關鍵詞CLUCalc; GPGPU; animation; conformal geometric algebra (CGA); gaalop; geometric algebra; maple; molecular d
版次1
doihttps://doi.org/10.1007/978-3-642-31794-1
isbn_softcover978-3-642-44572-9
isbn_ebook978-3-642-31794-1Series ISSN 1866-6795 Series E-ISSN 1866-6809
issn_series 1866-6795
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Foundations of Geometric Algebra Computing影響因子(影響力)




書目名稱Foundations of Geometric Algebra Computing影響因子(影響力)學科排名




書目名稱Foundations of Geometric Algebra Computing網(wǎng)絡公開度




書目名稱Foundations of Geometric Algebra Computing網(wǎng)絡公開度學科排名




書目名稱Foundations of Geometric Algebra Computing被引頻次




書目名稱Foundations of Geometric Algebra Computing被引頻次學科排名




書目名稱Foundations of Geometric Algebra Computing年度引用




書目名稱Foundations of Geometric Algebra Computing年度引用學科排名




書目名稱Foundations of Geometric Algebra Computing讀者反饋




書目名稱Foundations of Geometric Algebra Computing讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:49:39 | 只看該作者
第146976主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:26:04 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:46:41 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:40:02 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:22:07 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:49:32 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:48:54 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:13:10 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:43:26 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
呼伦贝尔市| 青海省| 曲麻莱县| 靖安县| 江永县| 车致| 弥勒县| 肥西县| 股票| 增城市| 简阳市| 台山市| 都江堰市| 三门峡市| 黑龙江省| 镇远县| 南汇区| 甘肃省| 仁化县| 河池市| 宿迁市| 偏关县| 慈利县| 阿合奇县| 大新县| 正宁县| 珲春市| 东乡| 寻乌县| 黄冈市| 贵南县| 家居| 保定市| 通许县| 汝阳县| 金坛市| 西丰县| 临武县| 镇雄县| 乃东县| 金塔县|