找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Flow Lines and Algebraic Invariants in Contact Form Geometry; Abbas Bahri Book 2003 Springer Science+Business Media New York 2003 Algebra.

[復(fù)制鏈接]
查看: 41070|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:57:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry
編輯Abbas Bahri
視頻videohttp://file.papertrans.cn/345/344429/344429.mp4
叢書(shū)名稱(chēng)Progress in Nonlinear Differential Equations and Their Applications
圖書(shū)封面Titlebook: Flow Lines and Algebraic Invariants in Contact Form Geometry;  Abbas Bahri Book 2003 Springer Science+Business Media New York 2003 Algebra.
描述.This text features a careful?treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology).? In particular, this work develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields...The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications.? An increasing convergence with regular and singular Yamabe-type problems is discussed, and?the intersection?between?contact form and Riemannian geometry?is emphasized, with a specific focus on a unified approach to non-compactness in both disciplines.? Fully detailed, explicit proofs and a number of suggestions for further research are provided throughout...Rich in open problems and written with a global view of several branches of mathematics, this text?lays the?foundation?for new avenues of s
出版日期Book 2003
關(guān)鍵詞Algebra; ODEs; PDEs; Riemannian geometry; algebraic invariant; algebraic topology; differential geometry; h
版次1
doihttps://doi.org/10.1007/978-1-4612-0021-5
isbn_softcover978-1-4612-6576-4
isbn_ebook978-1-4612-0021-5Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightSpringer Science+Business Media New York 2003
The information of publication is updating

書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry影響因子(影響力)




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry被引頻次




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry被引頻次學(xué)科排名




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry年度引用




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry年度引用學(xué)科排名




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry讀者反饋




書(shū)目名稱(chēng)Flow Lines and Algebraic Invariants in Contact Form Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:02:45 | 只看該作者
第144429主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:43:50 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:51:31 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:21:01 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:14:27 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:53:52 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:45:39 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:39:00 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:29:03 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
繁峙县| 罗定市| 石河子市| 利川市| 郁南县| 新干县| 永春县| 栖霞市| 五原县| 台东县| 台前县| 新竹市| 新野县| 黄陵县| 石城县| 凤翔县| 三明市| 丘北县| 正蓝旗| 长治县| 韶山市| 景泰县| 浪卡子县| 石城县| 乐昌市| 玉树县| 绥棱县| 应城市| 梁河县| 清徐县| 勃利县| 濮阳县| 织金县| 西城区| 卢龙县| 敦化市| 金门县| 凤台县| 小金县| 云浮市| 乐昌市|