找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Flag-transitive Steiner Designs; Michael Huber Textbook 2009 Birkh?user Basel 2009 Combinatorics.Permutation.Steiner design.Steiner design

[復(fù)制鏈接]
查看: 51879|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:23:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Flag-transitive Steiner Designs
編輯Michael Huber
視頻videohttp://file.papertrans.cn/345/344069/344069.mp4
概述First full discussion of flag-transitive Steiner designs.At the interface of several disciplines, such as finite or incidence geometry, finite group theory, combinatorics, coding theory, and cryptogra
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Flag-transitive Steiner Designs;  Michael Huber Textbook 2009 Birkh?user Basel 2009 Combinatorics.Permutation.Steiner design.Steiner design
描述The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein’s Erlangen program(1872).Inaddition,especiallyfor?nitestructures,importantapplications to practical topics such as design theory, coding theory and cryptography have made the ?eld even more attractive. The subject matter of this research monograph is the study and class- cation of ?ag-transitive Steiner designs, that is, combinatorial t-(v,k,1) designs which admit a group of automorphisms acting transitively on incident point-block pairs. As a consequence of the classi?cation of the ?nite simple groups, it has been possible in recent years to characterize Steiner t-designs, mainly for t=2,adm- ting groups of automorphisms with su?ciently strong symmetry properties. For Steiner 2-designs, arguably the most general results have been the classi?cation of all point 2-transitive Steiner 2-designs in 1985 by W. M. Kantor, and the almost complete determination of all ?ag-transitive Steiner 2-designs announced in 1990 byF.Buekenhout,A.Delandtsheer,J.Doyen,P.B.Klei
出版日期Textbook 2009
關(guān)鍵詞Combinatorics; Permutation; Steiner design; Steiner designs; design; discrete geometry
版次1
doihttps://doi.org/10.1007/978-3-0346-0002-6
isbn_softcover978-3-0346-0001-9
isbn_ebook978-3-0346-0002-6Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱Flag-transitive Steiner Designs影響因子(影響力)




書目名稱Flag-transitive Steiner Designs影響因子(影響力)學(xué)科排名




書目名稱Flag-transitive Steiner Designs網(wǎng)絡(luò)公開度




書目名稱Flag-transitive Steiner Designs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Flag-transitive Steiner Designs被引頻次




書目名稱Flag-transitive Steiner Designs被引頻次學(xué)科排名




書目名稱Flag-transitive Steiner Designs年度引用




書目名稱Flag-transitive Steiner Designs年度引用學(xué)科排名




書目名稱Flag-transitive Steiner Designs讀者反饋




書目名稱Flag-transitive Steiner Designs讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:35:58 | 只看該作者
第144069主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:11:44 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:52:46 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:25:51 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:26:42 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:51:53 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:25:27 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:18:18 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:06:54 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉门市| 宁德市| 清徐县| 陇西县| 盐源县| 昭苏县| 永丰县| 仪征市| 海晏县| 大同县| 石河子市| 盖州市| 汝城县| 临洮县| 景泰县| 长顺县| 新龙县| 永靖县| 五华县| 郎溪县| 靖西县| 牡丹江市| 遵义县| 托克托县| 积石山| 宜城市| 泸水县| 文安县| 揭西县| 托克逊县| 大港区| 莆田市| 隆昌县| 额敏县| 通江县| 道真| 秦皇岛市| 项城市| 大英县| 年辖:市辖区| 靖宇县|