找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fixed Point Theory in Metric Type Spaces; Ravi P. Agarwal,Erdal Karap?nar,Antonio Francisco Book 2015 Springer International Publishing S

[復(fù)制鏈接]
查看: 29359|回復(fù): 51
樓主
發(fā)表于 2025-3-21 16:04:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fixed Point Theory in Metric Type Spaces
編輯Ravi P. Agarwal,Erdal Karap?nar,Antonio Francisco
視頻videohttp://file.papertrans.cn/345/344041/344041.mp4
概述Written by the leading experts in the field of fixed point theory and metric type spaces.Presents a self-contained account of the theory, techniques, and results in the rapidly-growing field of metric
圖書封面Titlebook: Fixed Point Theory in Metric Type Spaces;  Ravi P. Agarwal,Erdal Karap?nar,Antonio Francisco  Book 2015 Springer International Publishing S
描述Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology..The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework..Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research..
出版日期Book 2015
關(guān)鍵詞Banach Mappings; Berinde and Borcut’s Tripled Fixed Point Theorems; Expansive mappings; Fixed Point The
版次1
doihttps://doi.org/10.1007/978-3-319-24082-4
isbn_softcover978-3-319-79576-8
isbn_ebook978-3-319-24082-4
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Fixed Point Theory in Metric Type Spaces影響因子(影響力)




書目名稱Fixed Point Theory in Metric Type Spaces影響因子(影響力)學(xué)科排名




書目名稱Fixed Point Theory in Metric Type Spaces網(wǎng)絡(luò)公開度




書目名稱Fixed Point Theory in Metric Type Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fixed Point Theory in Metric Type Spaces被引頻次




書目名稱Fixed Point Theory in Metric Type Spaces被引頻次學(xué)科排名




書目名稱Fixed Point Theory in Metric Type Spaces年度引用




書目名稱Fixed Point Theory in Metric Type Spaces年度引用學(xué)科排名




書目名稱Fixed Point Theory in Metric Type Spaces讀者反饋




書目名稱Fixed Point Theory in Metric Type Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:42 | 只看該作者
第144041主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:48:29 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:38:04 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:46:31 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:10:43 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:45:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:58:02 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:41:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:39:41 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘城县| 青岛市| 阳谷县| 县级市| 永定县| 汤阴县| 竹山县| 石家庄市| 梨树县| 彭山县| 泗水县| 尚志市| 子洲县| 如皋市| 陵川县| 花莲县| 乐东| 西林县| 呼图壁县| 临洮县| 沛县| 思茅市| 中西区| 茌平县| 泸溪县| 泊头市| 沂南县| 小金县| 镇坪县| 黎城县| 永嘉县| 德保县| 汝阳县| 大冶市| 贵州省| 龙里县| 澄江县| 崇义县| 兴安县| 山丹县| 阳江市|