找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli; Gabor Toth Book 2002 Springer Science+Business Media New York 2002 Finite

[復(fù)制鏈接]
查看: 55094|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:41:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli
編輯Gabor Toth
視頻videohttp://file.papertrans.cn/344/343640/343640.mp4
概述useful for a course in Riemannian geometry
叢書名稱Universitext
圖書封面Titlebook: Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli;  Gabor Toth Book 2002 Springer Science+Business Media New York 2002 Finite
描述"Spherical soap bubbles", isometric minimal immersions of round spheres into round spheres, or spherical immersions for short, belong to a fast growing and fascinating area between algebra and geometry. This theory has rich interconnections with a variety of mathematical disciplines such as invariant theory, convex geometry, harmonic maps, and orthogonal multiplications. In this book, the author traces the development of the study of spherical minimal immersions over the past 30 plus years, including Takahashi‘s 1966 proof regarding the existence of isometric minimal immersions, DoCarmo and Wallach‘s study of the uniqueness of the standard minimal immersion in the seventies, and more recently, he examines the variety of spherical minimal immersions which have been obtained by the "equivariant construction" as SU(2)-orbits, first used by Mashimo in 1984 and then later by DeTurck and Ziller in 1992. In trying to make this monograph accessible not just to research mathematicians but mathematics graduate students as well, the author included sizeable pieces of material from upper level undergraduate courses, additional graduate level topics such as Felix Klein‘s classic treatise of the
出版日期Book 2002
關(guān)鍵詞Finite M?bius Groups; Riemannian geometry; minimum; spherical minimal immersions; spherical soap bubles
版次1
doihttps://doi.org/10.1007/978-1-4613-0061-8
isbn_softcover978-1-4612-6546-7
isbn_ebook978-1-4613-0061-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli影響因子(影響力)




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli影響因子(影響力)學科排名




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli網(wǎng)絡(luò)公開度




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli網(wǎng)絡(luò)公開度學科排名




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli被引頻次




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli被引頻次學科排名




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli年度引用




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli年度引用學科排名




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli讀者反饋




書目名稱Finite M?bius Groups, Minimal Immersions of Spheres, and Moduli讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:35:30 | 只看該作者
第143640主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:24:22 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:41:45 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:47:43 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:24:53 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:04:20 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:25:25 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:16:57 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:26:00 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠东县| 华池县| 阿拉善右旗| 安远县| 神池县| 江陵县| 正蓝旗| 三河市| 巴塘县| 华坪县| 博罗县| 宁德市| 廊坊市| 长乐市| 乌恰县| 深圳市| 阜宁县| 锡林浩特市| 三河市| 吉安县| 安康市| 利津县| 大石桥市| 即墨市| 西昌市| 盘锦市| 惠州市| 连州市| 宝坻区| 广德县| 色达县| 石阡县| 襄汾县| 台前县| 乐至县| 宽甸| 新宾| 中阳县| 北宁市| 海林市| 湖南省|