找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite Fields; Normal Bases and Com Dirk Hachenberger Book 1997 Springer Science+Business Media New York 1997 Arithmetic.addition.algebra.a

[復(fù)制鏈接]
查看: 43554|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:17:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Finite Fields
副標(biāo)題Normal Bases and Com
編輯Dirk Hachenberger
視頻videohttp://file.papertrans.cn/344/343613/343613.mp4
叢書(shū)名稱The Springer International Series in Engineering and Computer Science
圖書(shū)封面Titlebook: Finite Fields; Normal Bases and Com Dirk Hachenberger Book 1997 Springer Science+Business Media New York 1997 Arithmetic.addition.algebra.a
描述Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed- ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski‘s book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo- rem, a classical result from field theory, stating that in every finite dimen- sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor- mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very usef
出版日期Book 1997
關(guān)鍵詞Arithmetic; addition; algebra; algorithms; field theory
版次1
doihttps://doi.org/10.1007/978-1-4615-6269-6
isbn_softcover978-1-4613-7877-8
isbn_ebook978-1-4615-6269-6Series ISSN 0893-3405
issn_series 0893-3405
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書(shū)目名稱Finite Fields影響因子(影響力)




書(shū)目名稱Finite Fields影響因子(影響力)學(xué)科排名




書(shū)目名稱Finite Fields網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Finite Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Finite Fields被引頻次




書(shū)目名稱Finite Fields被引頻次學(xué)科排名




書(shū)目名稱Finite Fields年度引用




書(shū)目名稱Finite Fields年度引用學(xué)科排名




書(shū)目名稱Finite Fields讀者反饋




書(shū)目名稱Finite Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:54 | 只看該作者
第143613主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:49:27 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:51:52 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:42:47 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:18:09 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:06:44 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:23:56 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:36:58 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:55:04 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽侯县| 嘉祥县| 永福县| 景洪市| 兰坪| 阿克陶县| 巴彦淖尔市| 柞水县| 云浮市| 莆田市| 桃源县| 大余县| 海城市| 绵阳市| 乌兰浩特市| 汶川县| 库伦旗| 龙南县| 尼玛县| 姜堰市| 礼泉县| 安徽省| 昌平区| 义马市| 庄浪县| 阜新市| 渑池县| 武城县| 灵璧县| 丰顺县| 泾阳县| 法库县| 清流县| 通海县| 张北县| 莱阳市| 广安市| 楚雄市| 盐亭县| 宜丰县| 建瓯市|