找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Feedforward Neural Network Methodology; Terrence L. Fine Textbook 1999 Springer Science+Business Media New York 1999 Time series.algorithm

[復(fù)制鏈接]
查看: 24377|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:25:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Feedforward Neural Network Methodology
編輯Terrence L. Fine
視頻videohttp://file.papertrans.cn/342/341649/341649.mp4
叢書名稱Information Science and Statistics
圖書封面Titlebook: Feedforward Neural Network Methodology;  Terrence L. Fine Textbook 1999 Springer Science+Business Media New York 1999 Time series.algorithm
描述The decade prior to publication has seen an explosive growth in com- tational speed and memory and a rapid enrichment in our understa- ing of arti?cial neural networks. These two factors have cooperated to at last provide systems engineers and statisticians with a working, prac- cal, and successful ability to routinely make accurate complex, nonlinear models of such ill-understood phenomena as physical, economic, social, and information-based time series and signals and of the patterns h- den in high-dimensional data. The models are based closely on the data itself and require only little prior understanding of the stochastic mec- nisms underlying these phenomena. Among these models, the feedforward neural networks, also called multilayer perceptrons, have lent themselves to the design of the widest range of successful forecasters, pattern clas- ?ers, controllers, and sensors. In a number of problems in optical character recognition and medical diagnostics, such systems provide state-of-the-art performance and such performance is also expected in speech recognition applications. The successful application of feedforward neural networks to time series forecasting has been multiply d
出版日期Textbook 1999
關(guān)鍵詞Time series; algorithms; architecture; artificial neural network; classification; computer-aided design (
版次1
doihttps://doi.org/10.1007/b97705
isbn_softcover978-1-4757-7309-5
isbn_ebook978-0-387-22649-1Series ISSN 1613-9011 Series E-ISSN 2197-4128
issn_series 1613-9011
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

書目名稱Feedforward Neural Network Methodology影響因子(影響力)




書目名稱Feedforward Neural Network Methodology影響因子(影響力)學(xué)科排名




書目名稱Feedforward Neural Network Methodology網(wǎng)絡(luò)公開度




書目名稱Feedforward Neural Network Methodology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Feedforward Neural Network Methodology被引頻次




書目名稱Feedforward Neural Network Methodology被引頻次學(xué)科排名




書目名稱Feedforward Neural Network Methodology年度引用




書目名稱Feedforward Neural Network Methodology年度引用學(xué)科排名




書目名稱Feedforward Neural Network Methodology讀者反饋




書目名稱Feedforward Neural Network Methodology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:16 | 只看該作者
第141649主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:08:54 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:27:25 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:22:23 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:43:39 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:56:03 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:53:30 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:57:25 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:58:52 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安徽省| 册亨县| 斗六市| 文山县| 革吉县| 沂源县| 聂荣县| 安义县| 保靖县| 永年县| 喀什市| 新兴县| 乌恰县| 新化县| 平陆县| 普兰县| 安塞县| 大安市| 寻甸| 禹城市| 贵港市| 寻乌县| 玛纳斯县| 大关县| 黑山县| 康乐县| 锡林浩特市| 盐亭县| 阿拉善左旗| 长乐市| 合江县| 民乐县| 五华县| 类乌齐县| 塔城市| 南陵县| 喀喇沁旗| 平原县| 稷山县| 和硕县| 镇沅|