找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Federated Learning for Wireless Networks; Choong Seon Hong,Latif U. Khan,Zhu Han Book 2021 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 16787|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:54:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Federated Learning for Wireless Networks
編輯Choong Seon Hong,Latif U. Khan,Zhu Han
視頻videohttp://file.papertrans.cn/342/341597/341597.mp4
概述Offers the first comprehensive and systematic review of federated learning for wireless networks.Describes in detail the key design aspects of federated learning in wireless networks: resource optimiz
叢書名稱Wireless Networks
圖書封面Titlebook: Federated Learning for Wireless Networks;  Choong Seon Hong,Latif U. Khan,Zhu Han Book 2021 The Editor(s) (if applicable) and The Author(s)
描述.Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization prob
出版日期Book 2021
關(guān)鍵詞federated learning; centralized machine learning; distributed machine learning; Internet of Things; FedA
版次1
doihttps://doi.org/10.1007/978-981-16-4963-9
isbn_softcover978-981-16-4965-3
isbn_ebook978-981-16-4963-9Series ISSN 2366-1186 Series E-ISSN 2366-1445
issn_series 2366-1186
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Federated Learning for Wireless Networks影響因子(影響力)




書目名稱Federated Learning for Wireless Networks影響因子(影響力)學(xué)科排名




書目名稱Federated Learning for Wireless Networks網(wǎng)絡(luò)公開度




書目名稱Federated Learning for Wireless Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Federated Learning for Wireless Networks被引頻次




書目名稱Federated Learning for Wireless Networks被引頻次學(xué)科排名




書目名稱Federated Learning for Wireless Networks年度引用




書目名稱Federated Learning for Wireless Networks年度引用學(xué)科排名




書目名稱Federated Learning for Wireless Networks讀者反饋




書目名稱Federated Learning for Wireless Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:42 | 只看該作者
第141597主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:32:19 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:27:01 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:38:53 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:55:25 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:36:10 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:26:53 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:03:35 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:11:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海盐县| 宜阳县| 乐都县| 堆龙德庆县| 兴城市| 岗巴县| 天等县| 高雄县| 临夏市| 曲靖市| 房山区| 丰台区| 定南县| 长泰县| 阿荣旗| 共和县| 涪陵区| 丰城市| 石景山区| 多伦县| 南城县| 赣榆县| 北京市| 汨罗市| 乡宁县| 墨竹工卡县| 甘泉县| 繁昌县| 滦平县| 德庆县| 稷山县| 边坝县| 宿迁市| 冀州市| 和林格尔县| 浙江省| 丰县| 双柏县| 兴国县| 莒南县| 天水市|