找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Federated Learning; Privacy and Incentiv Qiang Yang,Lixin Fan,Han Yu Book 2020 Springer Nature Switzerland AG 2020 distributed machine lear

[復(fù)制鏈接]
查看: 46595|回復(fù): 60
樓主
發(fā)表于 2025-3-21 18:00:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Federated Learning
副標(biāo)題Privacy and Incentiv
編輯Qiang Yang,Lixin Fan,Han Yu
視頻videohttp://file.papertrans.cn/342/341590/341590.mp4
概述Provides a comprehensive and self-contained introduction to Federated Learning.Popular topic for GDPR.Covers learning, implementation and practice of Federated Learning
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Federated Learning; Privacy and Incentiv Qiang Yang,Lixin Fan,Han Yu Book 2020 Springer Nature Switzerland AG 2020 distributed machine lear
描述.This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. ..Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR...This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about fed
出版日期Book 2020
關(guān)鍵詞distributed machine learning; privacy preserving; machine learning; adversarial learning; artificial int
版次1
doihttps://doi.org/10.1007/978-3-030-63076-8
isbn_softcover978-3-030-63075-1
isbn_ebook978-3-030-63076-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Federated Learning影響因子(影響力)




書(shū)目名稱Federated Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Federated Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Federated Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Federated Learning被引頻次




書(shū)目名稱Federated Learning被引頻次學(xué)科排名




書(shū)目名稱Federated Learning年度引用




書(shū)目名稱Federated Learning年度引用學(xué)科排名




書(shū)目名稱Federated Learning讀者反饋




書(shū)目名稱Federated Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:16 | 只看該作者
第141590主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:46:27 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:59:04 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:07:36 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:04:23 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:54:29 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:33:18 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:02:45 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:35:35 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 15:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沿河| 同仁县| 武隆县| 泗洪县| 岢岚县| 宁夏| 孝昌县| 宜昌市| 巴林左旗| 康马县| 东至县| 岳池县| 保德县| 闻喜县| 驻马店市| 扎兰屯市| 仪陇县| 互助| 屏东县| 静安区| 栖霞市| 尼玛县| 巴彦淖尔市| 从化市| 广南县| 扎囊县| 时尚| 根河市| 梅河口市| 栾川县| 汉川市| 富顺县| 雷州市| 红安县| 武宁县| 扬中市| 武乡县| 大名县| 彭阳县| 新龙县| 万盛区|