找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Families of Conformally Covariant Differential Operators, Q-Curvature and Holography; Andreas Juhl Book 2009 Birkh?user Basel 2009 conform

[復制鏈接]
查看: 27228|回復: 37
樓主
發(fā)表于 2025-3-21 17:23:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography
編輯Andreas Juhl
視頻videohttp://file.papertrans.cn/341/340934/340934.mp4
概述First monograph dealing with Branson’s Q-curvature.Develops a new perspective on the subject, presents original results and suggests new research programs.Combines ideas of theoretical physics, differ
叢書名稱Progress in Mathematics
圖書封面Titlebook: Families of Conformally Covariant Differential Operators, Q-Curvature and Holography;  Andreas Juhl Book 2009 Birkh?user Basel 2009 conform
描述.The central object of the book is a subtle scalar Riemannian curvature quantity in even dimensions which is called Branson’s Q-curvature. It was introduced by Thomas Branson about 15 years ago in connection with an attempt to systematise the structure of conformal anomalies of determinants of conformally covariant differential operators on Riemannian manifolds. Since then, numerous relations of Q-curvature to other subjects have been discovered, and the comprehension of its geometric significance in four dimensions was substantially enhanced through the studies of higher analogues of the Yamabe problem. ...The book attempts to reveal some of the structural properties of Q-curvature in general dimensions. This is achieved by the development of a new framework for such studies. One of the main properties of Q-curvature is that its transformation law under conformal changes of the metric is governed by a remarkable linear differential operator: a conformally covariant higher order generalization of the conformal Laplacian. In the new approach, these operators and the associated Q-curvatures are regarded as derived quantities of certain conformally covariant families of differential o
出版日期Book 2009
關(guān)鍵詞conformally covariant operator; curvature; differential geometry; holography; hyperbolic geometry; intert
版次1
doihttps://doi.org/10.1007/978-3-7643-9900-9
isbn_ebook978-3-7643-9900-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography影響因子(影響力)




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography影響因子(影響力)學科排名




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography網(wǎng)絡公開度




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography網(wǎng)絡公開度學科排名




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography被引頻次




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography被引頻次學科排名




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography年度引用




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography年度引用學科排名




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography讀者反饋




書目名稱Families of Conformally Covariant Differential Operators, Q-Curvature and Holography讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:48:35 | 只看該作者
第140934主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:26:08 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:57:48 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:41:54 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:16:47 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:47:49 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:47:28 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:39:04 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:10:20 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 10:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
玉环县| 尼玛县| 东台市| 昭通市| 清水河县| 淳化县| 额济纳旗| 汤阴县| 宁明县| 洪湖市| 上栗县| 商洛市| 聂荣县| 克什克腾旗| 博爱县| 榆中县| 白城市| 澄迈县| 衡水市| 灵川县| 马边| 莲花县| 揭阳市| 建昌县| 江津市| 昌江| 洪洞县| 宾阳县| 贵州省| 东海县| 罗田县| 定西市| 扎鲁特旗| 东乡县| 太白县| 文化| 锡林郭勒盟| 神木县| 定州市| 平潭县| 兴安县|