找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook

[復(fù)制鏈接]
樓主: metabolism
41#
發(fā)表于 2025-3-28 17:37:08 | 只看該作者
Using Entities in?Knowledge Graph Hierarchies to?Classify Sensitive Information to the public. However, automatically classifying sensitive information is difficult, since sensitivity is often due to contextual knowledge that must be inferred from the text. For example, the mention of a specific named entity is unlikely to provide enough context to automatically know if the in
42#
發(fā)表于 2025-3-28 22:25:42 | 只看該作者
43#
發(fā)表于 2025-3-29 02:08:04 | 只看該作者
44#
發(fā)表于 2025-3-29 03:07:55 | 只看該作者
Query Expansion, Argument Mining and?Document Scoring for?an?Efficient Question Answering Systemcomparative question by retrieving documents based only on traditional measures (such as TF-IDF and BM25) does not always satisfy the need. In this paper, we propose a multi-layer architecture to answer comparative questions based on arguments. Our approach consists of a pipeline of query expansion,
45#
發(fā)表于 2025-3-29 09:55:56 | 只看該作者
Transformer-Encoder-Based Mathematical Information Retrievalrieval systems should not only be able to process natural language, but also mathematical and scientific notation to retrieve documents..In this work, we evaluate two transformer-encoder-based approaches on a Question Answer retrieval task. Our pre-trained ALBERT-model demonstrated competitive perfo
46#
發(fā)表于 2025-3-29 12:51:31 | 只看該作者
47#
發(fā)表于 2025-3-29 17:41:05 | 只看該作者
48#
發(fā)表于 2025-3-29 22:42:11 | 只看該作者
Tracking News Stories in?Short Messages in?the?Era of?Infodemic[.]), its impact on the results and why it is key to this type of work. We used a supervised algorithm proposed by Miranda et al. [.] and K-Means to provide evaluations for different use cases. We found that TF-IDF vectors are not always the best ones to group documents, and that algorithms are sens
49#
發(fā)表于 2025-3-30 00:39:24 | 只看該作者
50#
發(fā)表于 2025-3-30 05:52:18 | 只看該作者
Rhythmic and?Psycholinguistic Features for?Authorship Tasks in?the?Spanish Parliament: Evaluation anobtained by a BETO transformer, when the latter is trained on the original text, i.e., potentially learning from topical information. Moreover, we further investigate the results for the different authors, showing that variations in performance are partially explainable in terms of the authors’ poli
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 灵丘县| 喀喇| 新丰县| 沾化县| 丘北县| 平远县| 杂多县| 阜城县| 辽源市| 搜索| 清水河县| 廉江市| 安图县| 张家港市| 喜德县| 新田县| 醴陵市| 绥宁县| 奈曼旗| 定结县| 漯河市| 延寿县| 山西省| 景德镇市| 平乐县| 桐城市| 民丰县| 陆河县| 邮箱| 连城县| 搜索| 盘锦市| 麟游县| 沙湾县| 武冈市| 博白县| 鄂托克前旗| 靖边县| 隆林| 建德市|