找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extreme Value Theory for Time Series; Models with Power-La Thomas Mikosch,Olivier Wintenberger Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 小客車
21#
發(fā)表于 2025-3-25 03:51:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:54:04 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:34 | 只看該作者
Regularly Varying Random Variables and VectorsIn this chapter we introduce regular variation for random variables, random vectors and their distributions. These notions are important for the study of . in Chap. .: there we define the regular variation of these processes via regular variation of their finite-dimensional distributions.
24#
發(fā)表于 2025-3-25 16:22:29 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:45 | 只看該作者
26#
發(fā)表于 2025-3-26 02:20:03 | 只看該作者
27#
發(fā)表于 2025-3-26 08:22:25 | 只看該作者
Self-Normalization, Sample Autocorrelations and the ExtremogramIn this chapter we first present some consequences of the .-stable limit theory developed in the previous chapter. In particular, we derive results about the joint convergence of sums and maxima of regularly varying stationary sequences, and distributional limits of . sums.
28#
發(fā)表于 2025-3-26 09:15:50 | 只看該作者
Introduction,h and nineteenth centuries, for example the law or large numbers, the central limit theorem with Gaussian limit distribution, and Poisson’s limit theorem. The limit law in the latter result was considered of little practical value, very much in contrast to the Gaussian law.
29#
發(fā)表于 2025-3-26 12:45:52 | 只看該作者
30#
發(fā)表于 2025-3-26 18:04:28 | 只看該作者
Examples of Regularly Varying Stationary Processes In this chapter we consider various important classes of time series models which have the regular variation property. We focus on the derivation of the corresponding tail measures and the spectral tail process. In the presence of serial dependence the tail measures and spectral tail processes ofte
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富阳市| 迁西县| 永兴县| 沁水县| 文水县| 额敏县| 独山县| 绥阳县| 泰兴市| 新营市| 汝阳县| 刚察县| 昌乐县| 康乐县| 南和县| 新邵县| 乐东| 湖南省| 兰坪| 中阳县| 横峰县| 宾川县| 北辰区| 三明市| 资源县| 石台县| 汕尾市| 富宁县| 读书| 康乐县| 太谷县| 白城市| 绥滨县| 岳西县| 济源市| 泉州市| 上饶县| 昌乐县| 平舆县| 石台县| 铁岭市|