找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Controllability and Stabilization of the Wave Equation; Enrique Zuazua Textbook 2024 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 24092|回復(fù): 36
樓主
發(fā)表于 2025-3-21 20:04:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation
編輯Enrique Zuazua
視頻videohttp://file.papertrans.cn/321/320779/320779.mp4
概述Pedagogic introduction to the control and stabilization of waves.Careful and in-depth analysis.This approach is suitable for both experts and beginners
叢書(shū)名稱(chēng)UNITEXT
圖書(shū)封面Titlebook: Exact Controllability and Stabilization of the Wave Equation;  Enrique Zuazua Textbook 2024 The Editor(s) (if applicable) and The Author(s)
描述.This comprehensive monograph illustrates the intricate realm of controllability and stabilization of wave phenomena. Authored by an expert in the field, this book integrates J. L. Lion‘s renowned HUM method, multiplier techniques, and the construction of Lyapunov functionals...Through meticulous analysis and practical applications, this book provides invaluable insights for researchers seeking to navigate the expansive domain of wave-like equations and their control. Whether you are a seasoned mathematician or a newcomer to the field, this book serves as an indispensable guide, offering a thorough introduction and essential tools for understanding and controlling wave phenomena..
出版日期Textbook 2024
關(guān)鍵詞Wave equation; Stabilization; Control; Lyapunov functionals; Energy estimates
版次1
doihttps://doi.org/10.1007/978-3-031-58857-0
isbn_softcover978-3-031-58856-3
isbn_ebook978-3-031-58857-0Series ISSN 2038-5714 Series E-ISSN 2532-3318
issn_series 2038-5714
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation影響因子(影響力)




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation被引頻次




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation年度引用




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation年度引用學(xué)科排名




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation讀者反饋




書(shū)目名稱(chēng)Exact Controllability and Stabilization of the Wave Equation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:48:10 | 只看該作者
Wave Equation with a Nonlinear Internal Dissipation,here in the interior of the domain. We introduce and use LaSalle‘s invariance principle and build suitable Lyapunov functionals, as perturbations of the energy, allowing to get explicit decay rates as a function of the dissipative nonlinearity.
板凳
發(fā)表于 2025-3-22 02:31:16 | 只看該作者
Boundary Stabilization of the Wave Equation,solutions under general conditions on the partition of the boundary and on the nonlinearity. We also prove explicit decay rates under suitable assumptions on the damping term. In addition, we present a second proof of the exponential decay for the linear dissipation, of interest when dealing with mo
地板
發(fā)表于 2025-3-22 06:08:19 | 只看該作者
5#
發(fā)表于 2025-3-22 10:33:20 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:35 | 只看該作者
https://doi.org/10.1007/1-84628-179-2In this chapter the exact controllability of the semilinear wave equation, for globally Lipschitz nonlinearities, and with controls acting in the interior is studied. The problem is solved by means of linearization and fixed point techniques.
7#
發(fā)表于 2025-3-22 19:34:43 | 只看該作者
8#
發(fā)表于 2025-3-22 22:02:03 | 只看該作者
9#
發(fā)表于 2025-3-23 03:48:14 | 只看該作者
10#
發(fā)表于 2025-3-23 06:32:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滦平县| 和硕县| 浠水县| 垣曲县| 长宁区| 海晏县| 阳山县| 株洲县| 阜新| 上蔡县| 松溪县| 开封市| 安平县| 临汾市| 怀集县| 汾西县| 石城县| 邻水| 望奎县| 六安市| 台山市| 开江县| 尉犁县| 镇康县| 安塞县| 台北县| 平塘县| 个旧市| 甘孜县| 乐至县| 财经| 台南县| 万载县| 郁南县| 茌平县| 连江县| 赤水市| 铜陵市| 景德镇市| 江永县| 太康县|