找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Mathematics; Problem-Solving and Daniel Grieser Textbook 2018 Springer Nature Switzerland AG 2018 MSC (2010): 00-01, 00A07, 00A0

[復(fù)制鏈接]
樓主: 力學(xué)
21#
發(fā)表于 2025-3-25 06:32:49 | 只看該作者
Counting, can find counting problems in everyday life and in calculating probabilities (how likely is it to have two pairs in a poker hand?). You have already seen some counting problems in previous chapters and learned about the recursion technique. In this chapter we will take a systematic look at counting problems.
22#
發(fā)表于 2025-3-25 08:39:49 | 只看該作者
General problem solving strategies: Similar problems, working forward and backward, interim goals,ll help me to recall how I solved a similar problem. If I want to reach a goal then I can think about which steps I should do first in order to get there (working forward); or I can think about what could be the last step, reaching the goal (working backward), and what interim goals I could set for myself.
23#
發(fā)表于 2025-3-25 15:31:31 | 只看該作者
Logic and proofs, Therefore, if you want to argue reliably then you should know well both the basic logical structures and the phrases we use to express them. In the course of a mathematical investigation you make observations, discover patterns, have insights, make conjectures. In order to be sure that a conjecture is true you need a proof.
24#
發(fā)表于 2025-3-25 18:48:16 | 只看該作者
Elementary number theory, with since you were a small child. Therefore number theory is very suitable for your exploration of mathematics, and you will find number-theoretic problems in many places in this book. Number theory has many faces: some of the hardest problems of mathematics, still unsolved today, are stated in simple number-theoretic terms.
25#
發(fā)表于 2025-3-25 22:08:17 | 只看該作者
26#
發(fā)表于 2025-3-26 03:46:44 | 只看該作者
27#
發(fā)表于 2025-3-26 04:22:37 | 只看該作者
28#
發(fā)表于 2025-3-26 09:35:55 | 只看該作者
29#
發(fā)表于 2025-3-26 13:21:55 | 只看該作者
30#
發(fā)表于 2025-3-26 17:22:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 06:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 平阴县| 秭归县| 镇坪县| 阿拉善左旗| 区。| 梅州市| 敖汉旗| 伊宁市| 扎鲁特旗| 谷城县| 沈丘县| 黎川县| 鄂州市| 遂溪县| 会宁县| 鹤庆县| 安平县| 昌宁县| 河源市| 清新县| 上虞市| 林芝县| 池州市| 萨迦县| 济阳县| 梧州市| 鹤岗市| 毕节市| 讷河市| 蒙自县| 黎城县| 竹溪县| 武隆县| 镇宁| 南召县| 子长县| 南平市| 敦化市| 龙山县| 贵州省|