找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Curvature; James Casey Textbook 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996 Gaussian curvatu

[復制鏈接]
查看: 28802|回復: 62
樓主
發(fā)表于 2025-3-21 16:43:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Exploring Curvature
編輯James Casey
視頻videohttp://file.papertrans.cn/321/320272/320272.mp4
概述Einfache Experimente: Veranschaulichung differentialgeometrischer Begriffe
圖書封面Titlebook: Exploring Curvature;  James Casey Textbook 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996 Gaussian curvatu
描述. . . one should not be too ready to erect a wall of separation between nature and the human mind. d‘Alembert [Dugas (1955)] It is possible to present mathematics in a purely fonnal way, that is to say, without any reference to the physical world. Indeed, in the more advanced parts of abstract algebra and mathematical logic, one can pro- ceed only in this manner. In other parts of mathematics, especially in Euclidean geometry, calculus, differential equations, and surface ge- ometry, intimate connections exist between the mathematical ideas and physical things. In such cases, a deeper (and sometimes quicker) under- standing can be gained by taking advantage of these connections. I am not, of course, suggesting that one should appeal to physical intuition whenever one gets stuck in a mathematical proof: in proofs, there is no substitute for rigor. Rather, the connections with physical reality should be made either to motivate mathematical assumptions, or to introduce questions out of which theorems arise, or to illustrate the results of an analysis. Such interconnections are especially important in the teaching of mathematics to science and engineering students. But, mathematics stu
出版日期Textbook 1996
關鍵詞Gaussian curvature; commonplace curved objects; curvature; euklidische Geometrie; experiments; geometry; m
版次1
doihttps://doi.org/10.1007/978-3-322-80274-3
isbn_softcover978-3-528-06475-4
isbn_ebook978-3-322-80274-3
copyrightFriedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996
The information of publication is updating

書目名稱Exploring Curvature影響因子(影響力)




書目名稱Exploring Curvature影響因子(影響力)學科排名




書目名稱Exploring Curvature網(wǎng)絡公開度




書目名稱Exploring Curvature網(wǎng)絡公開度學科排名




書目名稱Exploring Curvature被引頻次




書目名稱Exploring Curvature被引頻次學科排名




書目名稱Exploring Curvature年度引用




書目名稱Exploring Curvature年度引用學科排名




書目名稱Exploring Curvature讀者反饋




書目名稱Exploring Curvature讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:53:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:36:04 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:35 | 只看該作者
Nicole Burzan,Ronald Hitzler,Heiko Kirschneres can be expressed in terms of certain fundamental quantities called the metric coefficients. The theory discussed here and in Chapter 13 was invented single-handedly in the early part of the 19th century by the great mathematician Gauss (whose biography is sketched in Chapter 14). It was a major turning point in the history of geometry.
5#
發(fā)表于 2025-3-22 10:20:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:08:03 | 只看該作者
7#
發(fā)表于 2025-3-22 19:48:19 | 只看該作者
8#
發(fā)表于 2025-3-23 00:14:20 | 只看該作者
Curves,duced in earlier chapters. Our aim is to proceed from intuitive notions about curves to a clear, abstract definition. This process - the clarification of ideas - is really one of the most important activities of the mathematician.
9#
發(fā)表于 2025-3-23 03:40:47 | 只看該作者
Tangent,rough .. The fact that Euclid felt compelled to . this result, which most of us would regard as “obvious”, attests to the high level of rigor that permeated Greek mathematics in the days of Plato’s Academy.
10#
發(fā)表于 2025-3-23 06:00:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桐柏县| 阜阳市| 盐城市| 怀化市| 繁峙县| 巴青县| 都安| 安达市| 洪湖市| 法库县| 六安市| 黄大仙区| 云阳县| 陈巴尔虎旗| 临泽县| 昌邑市| 湟源县| 越西县| 化隆| 肥城市| 苍梧县| 天峻县| 开原市| 徐闻县| 彭阳县| 郎溪县| 河池市| 乃东县| 鄂尔多斯市| 台山市| 渭源县| 万全县| 连云港市| 镇雄县| 和平区| 濉溪县| 平武县| 砚山县| 中卫市| 田林县| 雷州市|