找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extremal Combinatorics; With Applications in Stasys Jukna Textbook 20011st edition Springer-Verlag Berlin Heidelberg 2001 Diskrete Mathemat

[復(fù)制鏈接]
樓主: deep-sleep
21#
發(fā)表于 2025-3-25 04:55:51 | 只看該作者
Stasys JuknaProvides an introductory, self-contained and up-to-date source in extremal combinatorics suitable for a broad community: mathematicians, computer scientists, and engineers.Covers a substantial part of
22#
發(fā)表于 2025-3-25 09:53:18 | 只看該作者
23#
發(fā)表于 2025-3-25 14:23:15 | 只看該作者
Springer-Verlag Berlin Heidelberg 2001
24#
發(fā)表于 2025-3-25 19:43:42 | 只看該作者
25#
發(fā)表于 2025-3-25 20:20:26 | 只看該作者
Alexander Chursin,Yuri Vlasov,Yury Makarovimum) possible cardinality of a system of its subsets satisfying certain assumptions. To get a feeling about what kind of problems this book deals with, we list several typical examples. (Although long, the list is far from being exhaustive.) The number(s) in brackets indicate the section(s), where
26#
發(fā)表于 2025-3-26 03:41:05 | 只看該作者
https://doi.org/10.1007/978-981-99-2828-6he lectures are hold in parallel, in two different places and at the same time. Every club would like each of the lectures be visited by at least one of its members. Is it possible to arrange the attendance of inhabitants so that every club will know the contents of both lectures? This is a typical
27#
發(fā)表于 2025-3-26 06:14:57 | 只看該作者
https://doi.org/10.1007/978-3-7908-2076-8form family, some highly regular configurations, called “sunflowers,” must occur, regardless of the size of the universe. In this chapter we will consider this result as well as some of its modifications and applications.
28#
發(fā)表于 2025-3-26 08:45:12 | 只看該作者
SpringerBriefs in Digital Spacesamily reflects some kind of “dependence” between them. In this chapter we will study the weakest kind of this dependence — the members are required to be non-disjoint. A family is . if any two of its sets have a non-empty intersection.
29#
發(fā)表于 2025-3-26 15:14:26 | 只看該作者
30#
發(fā)表于 2025-3-26 18:25:12 | 只看該作者
https://doi.org/10.1007/978-3-658-35507-4In this section we give the notation that shall be standard throughout the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
招远市| 额敏县| 江山市| 黄平县| 尼勒克县| 瓮安县| 潜江市| 虎林市| 乡城县| 岢岚县| 称多县| 泰顺县| 揭阳市| 环江| 海门市| 兴安县| 安塞县| 海兴县| 虎林市| 肇源县| 尉氏县| 湘潭县| 八宿县| 宁安市| 杭锦后旗| 寻乌县| 周宁县| 曲靖市| 岳西县| 广昌县| 兴和县| 延寿县| 蓬溪县| 水城县| 类乌齐县| 泸定县| 滨州市| 宜春市| 芷江| 凭祥市| 高密市|