找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exterior Differential Systems; Robert L. Bryant,S. S. Chern,P. A. Griffiths Book 1991 Springer-Verlag New York Inc. 1991 Canon.Lemma.Web.b

[復(fù)制鏈接]
樓主: Confer
11#
發(fā)表于 2025-3-23 10:21:38 | 只看該作者
0940-4740 r differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the sys
12#
發(fā)表于 2025-3-23 13:55:23 | 只看該作者
Elements of Geometric Crystallography,mber of examples of characteristic varieties, discuss some of their elementary properties, and shall state a number of remarkable theorems concerning characteristic varieties of involutive differential systems. The proofs of most of the results rely on certain commutative algebra properties of involutive tableaux and will be given in Chapter VIII.
13#
發(fā)表于 2025-3-23 20:14:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:32:42 | 只看該作者
,Cartan-K?hler Theory, integral manifolds of appropriate exterior differential systems. Moreover, in differential geometry, particularly in the theory and applications of the moving frame and Cartan’s method of equivalence, the problems to be studied often appear naturally in the form of an exterior differential system a
15#
發(fā)表于 2025-3-24 04:34:17 | 只看該作者
The Characteristic Variety,mportant a role in the theory of differential systems as that played by the usual characteristic variety in classical RD.E. theory. We shall give a number of examples of characteristic varieties, discuss some of their elementary properties, and shall state a number of remarkable theorems concerning
16#
發(fā)表于 2025-3-24 07:43:22 | 只看該作者
17#
發(fā)表于 2025-3-24 12:17:43 | 只看該作者
18#
發(fā)表于 2025-3-24 16:05:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:33 | 只看該作者
Partial Differential Equations,n-linear, as it has been developed over the last twenty five years. Rather than giving complete proofs, we have preferred in general to present many examples illustrating the various methods used in the theory.
20#
發(fā)表于 2025-3-25 00:50:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 12:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶州市| 秦安县| 虎林市| 神池县| 成都市| 苏尼特右旗| 上思县| 津南区| 华安县| 库车县| 鹤壁市| 东乌| 崇义县| 阿鲁科尔沁旗| 海兴县| 象州县| 宁阳县| 新竹县| 井陉县| 穆棱市| 陇川县| 新安县| 元谋县| 丹东市| 松滋市| 绥德县| 五台县| 乌兰察布市| 苍梧县| 佛坪县| 内丘县| 宁安市| 康保县| 台南市| 隆尧县| 杨浦区| 广饶县| 偃师市| 常山县| 广昌县| 建湖县|