找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extensions and Absolutes of Hausdorff Spaces; Jack R. Porter,R. Grant Woods Textbook 1988 Springer-Verlag New York Inc. 1988 Compactificat

[復(fù)制鏈接]
樓主: Braggart
21#
發(fā)表于 2025-3-25 06:06:55 | 只看該作者
22#
發(fā)表于 2025-3-25 11:33:19 | 只看該作者
H-closed Extensions,xtensions of a space. We then construct and study the Fomin extension .X of an arbitrary space X, the Banaschewski-Fomin-?anin extension μX of a semiregular space X, and one-point H-closed extensions of locally H-closed spaces. Next we consider the interrelationships among certain partitions of .XX
23#
發(fā)表于 2025-3-25 15:05:27 | 只看該作者
24#
發(fā)表于 2025-3-25 18:28:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:10 | 只看該作者
26#
發(fā)表于 2025-3-26 01:43:27 | 只看該作者
Topological Background,metimes do not appear in a typical graduate level course in point-set topology. A familiarity with these ideas is necessary to what follows, so a detailed discussion of them is given here. The topologically sophisticated reader may wish to skip this material and to refer to it when the need arises.
27#
發(fā)表于 2025-3-26 04:38:46 | 只看該作者
H-closed Extensions,egular space X, and one-point H-closed extensions of locally H-closed spaces. Next we consider the interrelationships among certain partitions of .XX and the poset structure of .(X). We characterize and study those f ∈ C(X,Y) that can be extended to a function .f ∈ C(.X,.Y). The chapter concludes with the study of Θ-equivalent H-closed extensions.
28#
發(fā)表于 2025-3-26 08:48:04 | 只看該作者
Fly-by-Wire/Light Demonstrators,act, zero-dimensional extensions of a zero-dimensional space. In the final section of the chapter, we study certain “nice” extensions of an arbitrary (Hausdorff) space, namely the H-closed extensions.
29#
發(fā)表于 2025-3-26 13:49:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:04 | 只看該作者
Extensions of Spaces,act, zero-dimensional extensions of a zero-dimensional space. In the final section of the chapter, we study certain “nice” extensions of an arbitrary (Hausdorff) space, namely the H-closed extensions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 崇明县| 新绛县| 河津市| 房山区| 象州县| 淳安县| 前郭尔| 娱乐| 炉霍县| 泾源县| 垦利县| 梨树县| 离岛区| 新乡市| 读书| 南康市| 城固县| 屏山县| 凤山市| 星子县| 贵港市| 邯郸市| 沂源县| 开原市| 老河口市| 玛曲县| 定远县| 曲周县| 广河县| 张掖市| 吉木萨尔县| 拜城县| 香河县| 肃宁县| 桦南县| 庆元县| 延庆县| 潮州市| 桂林市| 屏南县|