找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts Spring 2015; Interactions between Dolors Herbera,Wolfgang Pitsch,Santiago Zarzuela Conference proceedings 2016 Springer

[復制鏈接]
樓主: 聯(lián)系
41#
發(fā)表于 2025-3-28 16:31:51 | 只看該作者
42#
發(fā)表于 2025-3-28 19:45:40 | 只看該作者
43#
發(fā)表于 2025-3-29 00:29:39 | 只看該作者
Immunodeficient Animals for Cancer Researchrovide sufficient conditions to ensure their degeneration at the second page. Finally, we see how to use our second collection of spectral sequences to produce a decomposition of local cohomology modules which can be regarded as a generalization of the classical Hochster formula for the local cohomology of a Stanley–Reisner ring.
44#
發(fā)表于 2025-3-29 06:56:23 | 只看該作者
https://doi.org/10.1007/978-1-4615-7228-2groups. Understanding maps between classifying spaces is part of the program for developing an homotopy representation theory. In this paper I will describe progress made in this direction (joint work with L. Morales and J. Cantarero).
45#
發(fā)表于 2025-3-29 09:06:16 | 只看該作者
https://doi.org/10.1007/978-3-319-50842-9, that the canonical map from the algebra to its quotient is a (surjective) homological epimorphism in the sense of Geigle–Lenzing. Our considerations substantially rely on a generalisation of Schwede’s homotopy theoretical interpretation of the Lie bracket in Hochschild cohomology. A brief reminder thereof will be given, too.
46#
發(fā)表于 2025-3-29 15:15:15 | 只看該作者
47#
發(fā)表于 2025-3-29 17:51:02 | 只看該作者
Homotopy Representations of Classifying Spaces,groups. Understanding maps between classifying spaces is part of the program for developing an homotopy representation theory. In this paper I will describe progress made in this direction (joint work with L. Morales and J. Cantarero).
48#
發(fā)表于 2025-3-29 20:56:01 | 只看該作者
49#
發(fā)表于 2025-3-30 00:07:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:14:01 | 只看該作者
Proalgebraic Crossed Modules of Quasirational Presentations,equence which arises from a certain prounipotent crossed module. The latter can be seen as concrete examples of proalgebraic homotopy types. We provide the Identity Theorem for pro-.-groups, answering a question of Serre.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
华容县| 长子县| 庆安县| 科技| 太白县| 钟祥市| 金乡县| 玛多县| 磐石市| 太仆寺旗| 大关县| 宁国市| 临猗县| 朔州市| 南木林县| 阳信县| 黑龙江省| 武威市| 衡阳市| 东光县| 鲁甸县| 辽宁省| 通州区| 钟山县| 满洲里市| 文昌市| 刚察县| 丰县| 麟游县| 榆中县| 宝山区| 洛宁县| 陇川县| 甘南县| 临颍县| 安远县| 来宾市| 永善县| 察雅县| 丁青县| 贡山|