找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts Spring 2014; Hamiltonian Systems Montserrat Corbera,Josep Maria Cors,Andrei Korobei Conference proceedings 2015 Springe

[復(fù)制鏈接]
樓主: 誤解
41#
發(fā)表于 2025-3-28 17:28:36 | 只看該作者
The Discrete Hamiltonian–Hopf Bifurcation for 4D Symplectic MapsWe consider a family of real-analytic symplectic four-dimensional maps ., ., . ≥ 1, with respect to the standard symplectic two-form ., where (.., .., .., ..) denote the Cartesian coordinates.
42#
發(fā)表于 2025-3-28 21:58:40 | 只看該作者
43#
發(fā)表于 2025-3-29 01:12:21 | 只看該作者
44#
發(fā)表于 2025-3-29 07:00:35 | 只看該作者
45#
發(fā)表于 2025-3-29 11:15:44 | 只看該作者
Frederick R. Maxfield,Darrell J. Yamashirohich are placed in the vertices of a regular polygon on . vertices. The primaries can be fixed or rotate with an uniform velocity around their center of mass. The first case is called the .-center problem, and the second the restricted (. + 1)-body problem. The last case has been studied in?[.], in this note we will mainly study the first one.
46#
發(fā)表于 2025-3-29 11:27:00 | 只看該作者
47#
發(fā)表于 2025-3-29 16:12:21 | 只看該作者
Bifurcations of the Spatial Central Configurations in the 5-Body Problem of the reasons why central configurations are interesting is that they allow us to obtain explicit homographic solutions of the .-body problem, that is, motions where the configuration of the system changes size but keeps its shape. Also, they are important in the study of total collisions.
48#
發(fā)表于 2025-3-29 21:59:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:31:55 | 只看該作者
Transport Dynamics: From the Bicircular to the Real Solar System Problemmation of the Solar System, a chain of independent Bicircular problems in order to get a first insight of transport in this simplified case. Each bicircular problem (BP) consists of the Sun (S), Jupiter (J), a planet and an infinitesimal mass.
50#
發(fā)表于 2025-3-30 05:07:26 | 只看該作者
978-3-319-22128-1Springer International Publishing Switzerland 2015
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三明市| 镇沅| 女性| 永德县| 海晏县| 措美县| 本溪| 洪江市| 修文县| 高要市| 巴林左旗| 武平县| 黄浦区| 宁晋县| 德阳市| 尚义县| 什邡市| 萨迦县| 衡东县| 斗六市| 舒城县| 徐闻县| 临武县| 丹凤县| 高邑县| 浙江省| 修文县| 凤凰县| 宁陕县| 五台县| 通化市| 奉贤区| 广丰县| 保靖县| 贵港市| 开封县| 花垣县| 项城市| 永川市| 红安县| 莒南县|