找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts Spring 2014; Hamiltonian Systems Montserrat Corbera,Josep Maria Cors,Andrei Korobei Conference proceedings 2015 Springe

[復制鏈接]
樓主: 誤解
21#
發(fā)表于 2025-3-25 06:50:24 | 只看該作者
On the Force Fields Which Are Homogeneous of Degree ?3. He also noticed that the addition of a force in 1∕.. to another force results in a kind of precession of the orbit, see?[14, Book 1,?Proposition?44]. In 1842, Jacobi?[8] gave general results about the force fields which are homogeneous of degree ? 3 and derived from a potential. More recently, Mon
22#
發(fā)表于 2025-3-25 07:38:22 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:43 | 只看該作者
25#
發(fā)表于 2025-3-25 21:08:05 | 只看該作者
26#
發(fā)表于 2025-3-26 02:07:26 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:06 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:39 | 只看該作者
29#
發(fā)表于 2025-3-26 15:38:21 | 只看該作者
Generalized Discrete Nonlinear Schr?dinger as a Normal Form at the Thermodynamic Limit for the Klein degrees of freedom and, in particular, in the thermodynamic limit. Indeed, motivated by the problems arising in the foundations of Statistical Mechanics, it is relevant to consider large systems (e.g., for a model of a crystal the number of particles should be of the order of the Avogadro number) w
30#
發(fā)表于 2025-3-26 17:07:06 | 只看該作者
Central Configurations of an Isosceles Trapezoidal Five-Body Problem, we study the central configuration of the isosceles trapezoidal five-body problem where four of the masses are placed at the vertices of the isosceles trapezoid and the fifth body can take various positions on the axis of symmetry. We identify regions in the phase space where it is possible to cho
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-20 06:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永善县| 建始县| 本溪市| 上高县| 永和县| 府谷县| 延川县| 蓬安县| 射阳县| 越西县| 囊谦县| 宜城市| 浦县| 永仁县| 连江县| 沐川县| 南木林县| 锦屏县| 沈阳市| 绥棱县| 沁源县| 方城县| 句容市| 白山市| 新平| 建水县| 农安县| 千阳县| 泸定县| 闽侯县| 天镇县| 色达县| 闻喜县| 榆中县| 诸暨市| 镇宁| 偃师市| 陕西省| 维西| 平定县| 中阳县|