找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts February 2016; Positivity and Valua Maria Alberich-Carrami?ana,Carlos Galindo,Joaquim Conference proceedings 2018 Sprin

[復(fù)制鏈接]
樓主: 使無罪
31#
發(fā)表于 2025-3-26 21:19:01 | 只看該作者
32#
發(fā)表于 2025-3-27 02:53:12 | 只看該作者
https://doi.org/10.1007/b105173We explore the notion of local numerical equivalence in higher dimension and its relationship with Newton–Okounkov bodies with respect to flags centered at a given point.
33#
發(fā)表于 2025-3-27 05:55:24 | 只看該作者
34#
發(fā)表于 2025-3-27 10:58:15 | 只看該作者
,Newton–Okounkov Bodies of Exceptional Curve Plane Valuations Non-positive at Infinity,In this note we announce a result determining the Newton–Okounkov bodies of the line bundle . with respect to ..
35#
發(fā)表于 2025-3-27 14:52:23 | 只看該作者
36#
發(fā)表于 2025-3-27 19:04:45 | 只看該作者
37#
發(fā)表于 2025-3-27 22:59:31 | 只看該作者
38#
發(fā)表于 2025-3-28 04:11:45 | 只看該作者
,Notes on Divisors Computing MLD’s and LCT’s,This note discusses results presented at the 2016 meeting “Workshop on Positivity and Valuations” at Centre de Recerca Matemàtica. Much of the content discussed below appears in?Blum (On divisors computing mld’s and lct’s, 2016, [.]) with further details.
39#
發(fā)表于 2025-3-28 08:23:42 | 只看該作者
The Universal Zeta Function for Curve Singularities and its Relation with Global Zeta Functions,The purpose of this note is to give a brief overview on zeta functions of curve singularities and to provide some evidences on how these and global zeta functions associated to singular algebraic curves over perfect fields relate to each other.
40#
發(fā)表于 2025-3-28 13:31:53 | 只看該作者
Algebraic Volumes of Divisors,We prove the following result: for every totally real Galois number field . there exists a smooth projective variety . and a divisor . on . such that . is a primitive element of ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 08:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
政和县| 保靖县| 五家渠市| 建阳市| 禹州市| 汉沽区| 临沭县| 行唐县| 新宾| 攀枝花市| 肃南| 渝中区| 高州市| 永靖县| 淮阳县| 和政县| 开原市| 偃师市| 安康市| 霍林郭勒市| 平果县| 宁夏| 宝坻区| 樟树市| 黄龙县| 凌海市| 那坡县| 司法| 巩义市| 石渠县| 淳化县| 太原市| 清流县| 湖北省| 凤阳县| 吉安县| 石泉县| 会东县| 澄江县| 鄯善县| 银川市|