找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts Fall 2019; Spaces of Analytic F Evgeny Abakumov,Anton Baranov,Joaquim Ortega-Cerdà Conference proceedings 2021 The Edito

[復(fù)制鏈接]
樓主: 麻煩
31#
發(fā)表于 2025-3-26 22:20:19 | 只看該作者
Evgeny Abakumov,Anton Baranov,Joaquim Ortega-CerdàCovers a wide spectrum of topics in contemporary analysis.Opens new perspectives for future research in the domain
32#
發(fā)表于 2025-3-27 03:24:29 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/e/image/319793.jpg
33#
發(fā)表于 2025-3-27 08:37:26 | 只看該作者
The Politics of the Roma in Italy and Spain, the corresponding family ., ., of Clark measures on .. For . and an inner function ., we show that the property . is directly related to the membership of an appropriate function in the de Branges–Rovnyak space ..
34#
發(fā)表于 2025-3-27 10:26:05 | 只看該作者
35#
發(fā)表于 2025-3-27 15:56:30 | 只看該作者
https://doi.org/10.1007/978-3-658-12061-0egral. We revisit this area by giving a description of canonical Hamiltonian systems whose spectral measures have logarithmic integral converging over the real line. Our result can be viewed as a spectral version of the classical Szeg? theorem in the theory of polynomials orthogonal on the unit circ
36#
發(fā)表于 2025-3-27 18:58:55 | 只看該作者
37#
發(fā)表于 2025-3-27 22:32:19 | 只看該作者
Immigration and the Challenge of Education ., with conjugate analytic symbols ., acting on .. We give a lower and an upper estimates of the trace of ., where . is a convex function . Next, we give asymptotic estimates of their singular values. We also consider the similar problem for Toeplitz operators.
38#
發(fā)表于 2025-3-28 03:51:39 | 只看該作者
39#
發(fā)表于 2025-3-28 10:03:43 | 只看該作者
40#
發(fā)表于 2025-3-28 14:24:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 08:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
简阳市| 洪雅县| 汝阳县| 鹿泉市| 武隆县| 双峰县| 泉州市| 株洲县| 晋江市| 玉山县| 时尚| 梓潼县| 青州市| 长治县| 绵阳市| 合阳县| 孝昌县| 新平| 黎平县| 三明市| 荥经县| 大城县| 泾川县| 兰考县| 蒲江县| 保亭| 晋江市| 连江县| 宜良县| 朝阳市| 洛宁县| 万盛区| 邯郸市| 开鲁县| 盖州市| 兰西县| 长兴县| 利辛县| 诏安县| 林州市| 肇庆市|