找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Expository Moments for Pseudo Distributions; Haruhiko Ogasawara Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
樓主: Eisenhower
21#
發(fā)表于 2025-3-25 06:19:16 | 只看該作者
The Sectionally Truncated Normal Distribution,runcation, moments and cumulants of the distribution are obtained. As an associated result of the Hermite polynomials found in the derivation, the product sum of natural numbers is introduced with its properties.
22#
發(fā)表于 2025-3-25 08:16:31 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:19 | 只看該作者
The Pseudo-Normal (PN) Distribution, published), 2021). The moment generating functions of the variables and their functions for the PN are obtained giving various moments. Closed properties of affine transformation, marginal/conditional and independent distributions are shown as in the CSN.
24#
發(fā)表于 2025-3-25 18:20:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:24 | 只看該作者
26#
發(fā)表于 2025-3-26 00:44:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:00:30 | 只看該作者
28#
發(fā)表于 2025-3-26 09:47:05 | 只看該作者
29#
發(fā)表于 2025-3-26 15:21:18 | 只看該作者
The Truncated Pseudo-Normal (TPN) and Truncated Normal-Normal (TNN) Distributions,. When the observable variables are sectionally truncated, we have the truncated pseudo normal (TPN) and normal-normal (TNN). The properties of the TPN and TNN e.g., the moment generating functions and closure, are given. Using a non-recursive formula, the moments of the TPN are derived.
30#
發(fā)表于 2025-3-26 17:27:37 | 只看該作者
Multivariate Measures of Skewness and Kurtosis,sized with the by-products of the explicit expressions of the elements. The vectors of the multivariate cumulants up to the fourth order are shown by the multiple commutators and their inverses. Properties of multivariate measures of skewness and kurtosis are discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
合水县| 达尔| 黄大仙区| 东安县| 盘山县| 塘沽区| 上林县| 渭南市| 新兴县| 高清| 恩平市| 昌平区| 安顺市| 永年县| 屯昌县| 牙克石市| 且末县| 海盐县| 昌宁县| 抚宁县| 东台市| 焦作市| 攀枝花市| 博兴县| 丹凤县| 新竹市| 定兴县| 金坛市| 湖北省| 沙坪坝区| 介休市| 呼和浩特市| 无极县| 平乡县| 金沙县| 饶平县| 黄平县| 阜新| 安新县| 岐山县| 商洛市|