找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exponentially Dichotomous Operators and Applications; Cornelis Mee Book 2008 Birkh?user Basel 2008 Banach space.Cauchy problem.Riccati equ

[復(fù)制鏈接]
樓主: 添加劑
11#
發(fā)表于 2025-3-23 13:32:16 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:58 | 只看該作者
0255-0156 ntary material: In this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and
13#
發(fā)表于 2025-3-23 18:46:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:37:17 | 只看該作者
15#
發(fā)表于 2025-3-24 03:16:14 | 只看該作者
16#
發(fā)表于 2025-3-24 09:11:15 | 只看該作者
https://doi.org/10.1007/978-1-4899-7439-6and [?., 0]. As an initial condition we assume . to be known for .∈[?.]: . The special case studied most has the form . where ~.,…,.} is a subset of [?.] consisting of discrete shifts and .,…,. are complex . matrices. Here the measure matrix . is discrete. Equations (8.1) and (8.2) are called ., because .η(θ) does not depend on .∈[?.].
17#
發(fā)表于 2025-3-24 13:49:23 | 只看該作者
https://doi.org/10.1007/978-981-19-3167-3eparating projection of . and the bounded additive perturbation Γ is off-diagonal with respect to this decomposition, we convert the equivalent statements derived into an existence result for certain solutions of Riccati equations in £(.). We conclude this chapter with perturbation results on the solutions of these Riccati equations.
18#
發(fā)表于 2025-3-24 18:26:46 | 只看該作者
19#
發(fā)表于 2025-3-24 22:28:45 | 只看該作者
0255-0156 Hopf factorization and Riccati equations, transport equations, diffusion equations of indefinite Sturm-Liouville type, noncausal infinite-dimensional linear continuous-time systems, and functional differential equations of mixed type.978-3-7643-8732-7Series ISSN 0255-0156 Series E-ISSN 2296-4878
20#
發(fā)表于 2025-3-25 02:48:03 | 只看該作者
Birkh?user Basel 2008
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连平县| 云安县| 凭祥市| 伊宁市| 来凤县| 福安市| 张家界市| 镶黄旗| 阳曲县| 无为县| 崇文区| 武宁县| 会东县| 寿阳县| 静安区| 商城县| 孝感市| 潼关县| 土默特右旗| 泸水县| 双城市| 鄂托克旗| 青阳县| 鹰潭市| 武川县| 闽侯县| 保德县| 文成县| 潍坊市| 桐庐县| 双辽市| 康平县| 罗平县| 白玉县| 马山县| 阜阳市| 遂川县| 长海县| 和田县| 甘孜县| 兴海县|