找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring the Riemann Zeta Function; 190 years from Riema Hugh Montgomery,Ashkan Nikeghbali,Michael Th. Rass Book 2017 Springer Internation

[復(fù)制鏈接]
樓主: 債務(wù)人
31#
發(fā)表于 2025-3-27 00:42:39 | 只看該作者
Forschungsgruppe Konsum und VerhaltenWe prove a version of Bagchi’s Theorem and of Voronin’s Universality Theorem for the family of primitive cusp forms of weight 2 and prime level, and discuss under which conditions the argument will apply to a general reasonable family of automorphic .-functions.
32#
發(fā)表于 2025-3-27 04:37:06 | 只看該作者
https://doi.org/10.1007/978-3-319-50950-1A Taniyama product for the Riemann zeta function is defined and an analogue of Mertens’ theorem is proved.
33#
發(fā)表于 2025-3-27 08:39:06 | 只看該作者
The Temptation of the Exceptional Characters,We survey some of the history and results related to the topic of the title with an emphasis admittedly biased toward our joint works thereon.
34#
發(fā)表于 2025-3-27 11:52:58 | 只看該作者
,On a Cubic Moment of Hardy’s Function with a Shift,An asymptotic formula for . is derived, where . is Hardy’s function. The cubic moment of .(.) is also discussed, and a mean value result is presented which supports the author’s conjecture that
35#
發(fā)表于 2025-3-27 16:51:33 | 只看該作者
36#
發(fā)表于 2025-3-27 19:53:38 | 只看該作者
37#
發(fā)表于 2025-3-28 00:10:25 | 只看該作者
Friendship, Intimacy, and Humor,zeta function as a meromorphic function in the plane with a functional equation. Riemann is a very remarkable figure in the history of mathematics. The present article describes his career including the major mathematical highlights, and gives some discussion of his published and unpublished work on the zeta function.
38#
發(fā)表于 2025-3-28 03:37:23 | 只看該作者
39#
發(fā)表于 2025-3-28 09:45:46 | 只看該作者
Hugh Montgomery,Ashkan Nikeghbali,Michael Th. RassIllustrates mathematical results and solves open problems in a simple manner.Features contributions by experts in analysis, number theory, and related fields.Contains new results in rapidly progressin
40#
發(fā)表于 2025-3-28 10:35:08 | 只看該作者
http://image.papertrans.cn/e/image/319661.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南县| 会泽县| 辉县市| 鞍山市| 彭阳县| 宿松县| 凤冈县| 长葛市| 澳门| 瓦房店市| 溧阳市| 准格尔旗| 绥滨县| 武乡县| 琼中| 英德市| 固安县| 瓮安县| 休宁县| 莱西市| 新野县| 高雄市| 通山县| 吕梁市| 白山市| 伊宁市| 电白县| 宜兰县| 沂水县| 美姑县| 苗栗市| 和田市| 东乡族自治县| 宜春市| 乌恰县| 信丰县| 友谊县| 保德县| 满城县| 义马市| 盐边县|