找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Mathematical Analysis, Approximation Theory, and Optimization; 270 Years Since A.-M Nicholas J. Daras,Michael Th. Rassias,Nikolao

[復(fù)制鏈接]
樓主: 無感覺
21#
發(fā)表于 2025-3-25 04:25:18 | 只看該作者
22#
發(fā)表于 2025-3-25 10:29:52 | 只看該作者
1931-6828 higher order polynomials, generating functions for the Fubini type polynomials, local asymptotics for orthonormal polynomials, trends in geometric function theory, quasi variational inclusions, Kleene fixed po978-3-031-46489-8978-3-031-46487-4Series ISSN 1931-6828 Series E-ISSN 1931-6836
23#
發(fā)表于 2025-3-25 13:57:21 | 只看該作者
A Unified Approach to Extended General Quasi Variational Inclusions,si variational inclusions, absolute vale equations, complementarity problems, variational inequalities, and related optimization problems as special cases, our results continue to hold for these problems. It is an interesting problem to compare these methods with other technique for solving quasi va
24#
發(fā)表于 2025-3-25 18:49:46 | 只看該作者
25#
發(fā)表于 2025-3-25 19:58:28 | 只看該作者
A Strong Maximum Principle for General Nonlinear Operators,
26#
發(fā)表于 2025-3-26 00:26:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:22 | 只看該作者
28#
發(fā)表于 2025-3-26 11:05:45 | 只看該作者
https://doi.org/10.1007/978-3-030-19163-4elastic materials, with or without the clamped condition. We describe the mechanical problem, derive its variational formulation, and after specifying the assumptions on the data and operators, we prove an existence and uniqueness of weak solution on displacement and temperature fields.
29#
發(fā)表于 2025-3-26 16:27:09 | 只看該作者
Felice Batlan,Marianne Vasara-Aaltonen bounded variation and of Lipschitzian functions. Applications for mid-point and trapezoid inequalities are provided as well. They generalize the know results holding for the classical Riemann integral.
30#
發(fā)表于 2025-3-26 17:44:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽州县| 道真| 博兴县| 轮台县| 垣曲县| 乃东县| 苍溪县| 万盛区| 尼木县| 准格尔旗| 玉龙| 阿拉善右旗| 喀喇沁旗| 沂源县| 舒城县| 从江县| 奉化市| 珲春市| 理塘县| 榆社县| 平邑县| 江达县| 道真| 吉安市| 弥渡县| 兰西县| 合江县| 大同市| 通山县| 平乐县| 江门市| 高密市| 八宿县| 梧州市| 菏泽市| 交城县| 依兰县| 武义县| 南通市| 平顶山市| 东方市|