找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explorations in Complex Functions; Richard Beals,Roderick S. C. Wong Textbook 2020 Springer Nature Switzerland AG 2020 Complex analysis te

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 09:43:20 | 只看該作者
https://doi.org/10.1007/978-1-4899-0562-8This chapter relies heavily on Chapter ., with some reference to analytic continuation and conformal mapping, particularly Theorem ..
12#
發(fā)表于 2025-3-23 17:08:48 | 只看該作者
13#
發(fā)表于 2025-3-23 18:25:49 | 只看該作者
14#
發(fā)表于 2025-3-24 00:38:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:29 | 只看該作者
Riemann surfaces and algebraic curves,A Riemann surface can be thought as the domain of definition of a holomorphic function . that has been continued analytically as far as such continuations can be carried out. In general this is not a domain in the previous sense, i.e. a subset of the plane. Rather it is a complex manifold of one (complex) dimension that projects locally into ..
16#
發(fā)表于 2025-3-24 08:24:39 | 只看該作者
Entire functions,An entire function, a function that is defined and holomorphic in the entire plane ., can be analyzed in terms of its zeros and of its growth. Such an analysis has important applications.
17#
發(fā)表于 2025-3-24 11:35:26 | 只看該作者
18#
發(fā)表于 2025-3-24 15:13:29 | 只看該作者
The Riemann zeta function,As Euler noted, the fact that the series (.) diverges at . gives another proof that the set of primes is infinite—in fact . diverges. (This is only the simplest of the connections between properties of the zeta function and properties of primes.)
19#
發(fā)表于 2025-3-24 19:27:25 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大港区| 阿克陶县| 秦皇岛市| 万盛区| 会泽县| 西乌| 湖州市| 高唐县| 灵山县| 桂林市| 长武县| 陇川县| 江油市| 江都市| 阿瓦提县| 资兴市| 昂仁县| 黄石市| 霍林郭勒市| 循化| 潼南县| 博兴县| 剑河县| 伊春市| 陇川县| 买车| 九江县| 齐河县| 资溪县| 平顶山市| 漳浦县| 稷山县| 林口县| 灵丘县| 德惠市| 江达县| 佛学| 临海市| 乌拉特后旗| 漯河市| 兴义市|