找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploitation of Linkage Learning in Evolutionary Algorithms; Ying-ping Chen Book 2010 Springer-Verlag Berlin Heidelberg 2010 Bayesian netw

[復(fù)制鏈接]
查看: 30711|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:04:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms
編輯Ying-ping Chen
視頻videohttp://file.papertrans.cn/320/319373/319373.mp4
概述The recent progress of linkage learning.Demonstrates a new connection between optimization methodologies and natural evolution mechanisms.Written by experts in the field
叢書名稱Adaptation, Learning, and Optimization
圖書封面Titlebook: Exploitation of Linkage Learning in Evolutionary Algorithms;  Ying-ping Chen Book 2010 Springer-Verlag Berlin Heidelberg 2010 Bayesian netw
描述.One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of linkage. In evolutionary algorithms, linkage models the relation between decision variables with the genetic linkage observed in biological systems, and linkage learning connects computational optimization methodologies and natural evolution mechanisms. Exploitation of linkage learning can enable us to design better evolutionary algorithms as well as to potentially gain insight into biological systems. Linkage learning has the potential to become one of the dominant aspects of evolutionary algorithms; research in this area can potentially yield promising results in addressing the scalability issues. .
出版日期Book 2010
關(guān)鍵詞Bayesian network; Evolutionary Computation; Linkage Learning; Markov; algorithm; algorithms; calculus; evol
版次1
doihttps://doi.org/10.1007/978-3-642-12834-9
isbn_softcover978-3-642-26327-9
isbn_ebook978-3-642-12834-9Series ISSN 1867-4534 Series E-ISSN 1867-4542
issn_series 1867-4534
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms影響因子(影響力)




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms影響因子(影響力)學(xué)科排名




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms網(wǎng)絡(luò)公開度




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms被引頻次




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms被引頻次學(xué)科排名




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms年度引用




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms年度引用學(xué)科排名




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms讀者反饋




書目名稱Exploitation of Linkage Learning in Evolutionary Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:09 | 只看該作者
https://doi.org/10.1007/978-3-319-33130-0dependent on) one another, and the performance of three basic types of genetic evolutionary algorithms (GEAs): hill climbing, genetic algorithm and bottom-up self-assembly (compositional). It explores how concepts and quantitative methods from the field of social/complex networks can be used to char
板凳
發(fā)表于 2025-3-22 03:41:50 | 只看該作者
地板
發(fā)表于 2025-3-22 06:41:38 | 只看該作者
5#
發(fā)表于 2025-3-22 09:28:27 | 只看該作者
The Relativistic Theory of Timelgorithms (EDAs). Distribution Estimation Using Markov network (DEUM) is one of the early EDAs to use this approach. Over the years, several different versions of DEUM have been proposed using different Markov network structures, and are shown to work well in a number of different optimisation probl
6#
發(fā)表于 2025-3-22 16:42:42 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:57 | 只看該作者
https://doi.org/10.1007/978-3-642-50696-3etic Algorithms may suffer from exponential scalability on hard problems. Estimation of Distribution Algorithms, a special class of Genetic Algorithms, can build complex models of the iterations among variables in the problem, solving several intractable problems in tractable polynomial time. Howeve
8#
發(fā)表于 2025-3-23 00:46:35 | 只看該作者
Der Brückenbauer Hans-Dietrich Genscherbution model, which is latter sampled to generate the population for the next generation. This chapter introduces a new way to estimate the distribution model and sample from it according to copula theory. The multivariate joint is decomposed into the univariate margins and a function called copula.
9#
發(fā)表于 2025-3-23 02:47:26 | 只看該作者
10#
發(fā)表于 2025-3-23 07:26:42 | 只看該作者
,Die Zeit der gro?en Landesausstellungen,f Distribution Algorithm (EDA) to solve the PSP problem on HP model. Firstly, a composite fitness function containing the information of folding structure core (H-Core) is introduced to replace the traditional fitness function of HP model. The new fitness function is expected to select better indivi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵川县| 华容县| 濮阳市| 阿拉善右旗| 汝城县| 从化市| 湖口县| 武安市| 丰宁| 汉源县| 凉山| 彭泽县| 嘉义县| 河南省| 安国市| 原阳县| 江川县| 洪洞县| 长垣县| 蒙阴县| 海口市| 沙河市| 巩留县| 巴林左旗| 博爱县| 林州市| 舞阳县| 西丰县| 卢湾区| 衡南县| 昭平县| 丽江市| 宁蒗| 奎屯市| 都安| 金昌市| 易门县| 天全县| 龙口市| 和龙市| 瑞昌市|