找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics; Ulianov Montano Book 2014 Springer International Publishing Switzerl

[復制鏈接]
樓主: Sinuate
11#
發(fā)表于 2025-3-23 11:18:22 | 只看該作者
Synthesis of Materials Under High Pressure, in value, but also on changes in the constitution of our experience. The discussion also shows that the aesthetic as process theory is able to make predictions: the theory coherently predicts that computer-assisted proofs have little chance of being regarded as beautiful in the future.
12#
發(fā)表于 2025-3-23 16:46:37 | 只看該作者
Case Analysis III: Ugliness, Revisited in value, but also on changes in the constitution of our experience. The discussion also shows that the aesthetic as process theory is able to make predictions: the theory coherently predicts that computer-assisted proofs have little chance of being regarded as beautiful in the future.
13#
發(fā)表于 2025-3-23 18:12:07 | 只看該作者
14#
發(fā)表于 2025-3-24 00:08:07 | 只看該作者
Introduction to a Naturalistic Aesthetic Theorys that characteristically participate in aesthetic-processes. Aesthetic events should not be understood in isolation but as part of a process, of a system that unfolds by following different pathways over different times.
15#
發(fā)表于 2025-3-24 04:04:54 | 只看該作者
0166-6991 ory that accounts for aesthetic phenomena in mathematics.Dra.This book develops a naturalistic aesthetic theory that accounts for aesthetic phenomena in mathematics in the same terms as it accounts for more traditional aesthetic phenomena. Building upon a view advanced by James McAllister, the asser
16#
發(fā)表于 2025-3-24 07:17:21 | 只看該作者
https://doi.org/10.1007/978-3-031-48735-4shall be argued that the reasons for endorsing a non literal interpretation of mathematical beauty are rather weak. The discussion also examines the conceptions of mathematical beauty by Shaftesbury, Hutchenson and Gian-Carlo Rota.
17#
發(fā)表于 2025-3-24 11:27:55 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:48 | 只看該作者
Christoph Schwindt,Tobias Paetzount of beauty based merely on the passive contemplation of properties of objects is insufficient to account for mathematical items that involve the active use of our attention. Special emphasis is placed on the importance of mental contents and mental activities in mathematical beauty; the crucial notion of intentional object is thus introduced.
19#
發(fā)表于 2025-3-24 19:57:58 | 只看該作者
20#
發(fā)表于 2025-3-25 01:02:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东至县| 伽师县| 江阴市| 大新县| 阜新市| 阜阳市| 济南市| 革吉县| 通海县| 江阴市| 潞城市| 荆门市| 襄城县| 塔城市| 通山县| 翼城县| 新野县| 喀喇| 宁都县| 沁水县| 阳山县| 唐山市| 班玛县| 阜阳市| 太和县| 沂南县| 贡嘎县| 辽阳县| 普陀区| 即墨市| 金堂县| 乐都县| 克什克腾旗| 民勤县| 鄂伦春自治旗| 建昌县| 枝江市| 黄冈市| 云阳县| 永善县| 醴陵市|