找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable and Transparent AI and Multi-Agent Systems; 5th International Wo Davide Calvaresi,Amro Najjar,Kary Fr?mling Conference proceedi

[復制鏈接]
樓主: DUBIT
41#
發(fā)表于 2025-3-28 15:42:06 | 只看該作者
42#
發(fā)表于 2025-3-28 20:47:22 | 只看該作者
A General-Purpose Protocol for?Multi-agent Based Explanations agents may need to provide explanations for their recommendations. The protocol specifies the roles and responsibilities of the explainee and the explainer agent and the types of information that should be exchanged between them to ensure a clear and effective explanation. However, it does not pres
43#
發(fā)表于 2025-3-29 01:24:24 | 只看該作者
44#
發(fā)表于 2025-3-29 05:55:11 | 只看該作者
Estimating Causal Responsibility for?Explaining Autonomous Behaviorg offer several theoretical benefits when exact inference can be applied. Furthermore, users overwhelmingly prefer the resulting causal explanations over other state-of-the-art systems. In this work, we focus on one such method, ., and its approximate versions that drastically reduce compute load an
45#
發(fā)表于 2025-3-29 07:57:24 | 只看該作者
46#
發(fā)表于 2025-3-29 11:48:15 | 只看該作者
Bottom-Up and?Top-Down Workflows for?Hypercube- And Clustering-Based Knowledge Extractorsressive predictive performances. However, they act as black boxes (BBs) from the human standpoint, so they cannot be entirely trusted in critical applications unless there exists a method to extract symbolic and human-readable knowledge out of them..In this paper we analyse a recurrent design adopte
47#
發(fā)表于 2025-3-29 16:13:43 | 只看該作者
Imperative Action Masking for?Safe Exploration in?Reinforcement Learningety hazards, not necessarily in the next state but in the future. Therefore, it is essential to evaluate each action beforehand to ensure safety. The exploratory actions and the actions proposed by the RL agent could also be unsafe during training and in the deployment phase. In this work, we have p
48#
發(fā)表于 2025-3-29 21:15:59 | 只看該作者
Reinforcement Learning in?Cyclic Environmental Changes for?Agents in?Non-Communicative Environments:-communicative and dynamic environment. Profit minimizing reinforcement learning with the oblivion of memory (PMRL-OM) enables agents to learn a co-operative policy using learning dynamics instead of communication information. It enables the agents to adapt to the dynamics of the other agents’ behav
49#
發(fā)表于 2025-3-30 01:44:12 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 08:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广汉市| 安庆市| 晋城| 江安县| 台江县| 潢川县| 马山县| 新野县| 鸡东县| 石门县| 丹巴县| 镇远县| 二连浩特市| 柳州市| 保德县| 冕宁县| 安徽省| 马尔康县| 大洼县| 都匀市| 纳雍县| 新泰市| 孝昌县| 逊克县| 若尔盖县| 高雄县| 开平市| 安多县| 建平县| 通城县| 贵定县| 措美县| 饶阳县| 当涂县| 阿图什市| 绥滨县| 丰都县| 上蔡县| 徐闻县| 布拖县| 渭源县|